explore the nature of ligand binding to the a7 nAChR and
other receptor subtypes. Our results detailing the interaction of
MLA 1 with the a4b2 nAChR will be reported in due course.
We thank the Australian Research Council (DP0986469) for
financial support. MC thanks the Drug Research Academy,
University of Copenhagen, Denmark and the Australian
Academy of Science for travel support.
Notes and references
1 G. T. Hermanson, Bioconjugate Techniques, Academic Press,
San Diego, CA, 1996.
2 J. Kalia and R. T. Raines, Curr. Org. Chem., 2010, 14, 138.
3 J. M. Chalker, G. J. L. Bernardes, Y. A. Lin and B. G. Davis,
Chem.–Asian J., 2009, 4, 630.
4 G. G. Wilson and A. Karlin, Proc. Natl. Acad. Sci. U. S. A., 2001,
98, 1241.
5 J. G. Newell and C. Czajkowski, in Handbook of Neurochemistry
and Molecular Neurobiology, ed. A. Lajtha, G. Baker, S. Dunn and
A. Holt, Springer, Boston, MA, 2007, ch. 21, p. 439.
6 A. Karlin and M. H. Akabas, in Methods in Enzymology, Vol. 293,
Ion Channels Part B, ed. P. M. Conn, Academic Press, New York,
NY, 1998, ch. 8, p. 123.
7 K. Alarcon, A. Martz, L. Mony, J. Neyton, P. Paoletti,
M. Goeldner and B. Foucaud, Bioorg. Med. Chem. Lett., 2008,
18, 2765; C. Tahtaoui, M.-N. Balestre, P. Klotz, D. Rognan,
C. Barberis, B. Mouillac and M. Hibert, J. Biol. Chem., 2003,
278, 40010; Y. Yu, L. Shi and A. Karlin, Proc. Natl. Acad. Sci.
U. S. A., 2003, 100, 3907.
Fig. 2 Homology model of MLA 1 (pale cyan) bound rat a7 nAChR
(cyan) with S189 to succinimide hydrogen bond indicated (dotted line),
and loop sampled model (blue) after in-silico S188C mutation and
reaction with MLA maleimide 3 (light blue).
contrast, the S188 Ca is placed 7 A from the succinimide
moiety and the side chain points away from the binding site.
Rather than assuming a binding mode for MLA maleimide 3
different than that of MLA 1 in the X-ray structures,11 the
reactivity of the S188C: L90T mutant may suggest that Loop-F
is flexible and can change conformation so that S188 comes in
close proximity of the succinimide/maleimide moiety.
8 G. X. J. Quek, D. Lin, J. I. Halliday, N. Absalom, J. I. Ambrus,
A. J. Thompson, M. Lochner, S. C. R. Lummis, M. D. McLeod
and M. Chebib, ACS Chem. Neurosci., 2010, 1, 796.
9 R. E. Hibbs and E. Gouaux, Nature, 2011, 474, 54; R. J. C. Hilf
and R. Dutzler, Nature, 2008, 452, 375; N. Bocquet, H. Nury,
M. Baaden, C. Le Poupon, J.-P. Changeux, M. Delarue and
P.-J. Corringer, Nature, 2008, 457, 111; N. Unwin, J. Mol. Biol.,
2005, 346, 967.
10 A. B. Smit, N. I. Syed, D. Schaap, J. van Minnen, J. Klumperman,
K. S. Kits, H. Lodder, R. C. van der Schors, R. van Elk,
B. Sorgedrager, K. Brejc, T. K. Sixma and W. P. M. Geraerts,
Nature, 2001, 411, 261; S. B. Hansen, T. T. Talley, Z. Radic and
P. Taylor, J. Biol. Chem., 2004, 279, 24197.
11 A. Nemecz and P. Taylor, J. Biol. Chem., 2011, 286, 42555;
S. B. Hansen, G. Sulzenbacher, T. Huxford, P. Marchot,
P. Taylor and Y. Bourne, EMBO J., 2005, 24, 3635.
12 J. L. Vanderhooft, B. K. Mann and G. D. Prestwich, Biomacro-
molecules, 2007, 8, 2883.
13 M. E. B. Smith, F. F. Schumacher, C. P. Ryan, L. M. Tedaldi,
D. Papaioannou, G. Waksman, S. Caddick and J. R. Baker, J. Am.
Chem. Soc., 2010, 132, 1960; L. M. Tedaldi, M. E. B. Smith,
R. I. Nathani and J. R. Baker, Chem. Commun., 2009, 6583.
14 M. S. Yunusov, E. M. Tsyrlina, E. D. Khairitdinova,
L. V. Spirikhin, A. Y. Kovalevsky and M. Y. Antipin, Russ. Chem.
Bull., 2000, 49, 1629.
15 D. Barker, M. D. McLeod, M. A. Brimble and G. P. Savage,
Tetrahedron Lett., 2001, 42, 1785.
16 D. Bertrand, A. Devillers-Thiery, F. Revah, J. L. Galzi, N. Hussy,
C. Mulle, S. Bertrand, M. Ballivet and J. P. Changeux, Proc. Natl.
Acad. Sci. U. S. A., 1992, 89, 1261.
17 A. R. L. Davies, D. J. Hardick, I. S. Blagbrough, B. V. L. Potter,
A. J. Wolstenholme and S. Wonnacott, Neuropharmacology, 1999,
38, 679.
18 M. P. Jacobson, D. L. Pincus, C. S. Rapp, T. J. F. Day, B. Honig,
D. E. Shaw and R. A. Friesner, Proteins: Struct., Funct., Bioinf.,
2004, 55, 351.
To illustrate this possibility without violating common
geometric restraints for the protein backbone, Loop-F was
sampled using the Prime18 extended loop sampling protocol
(see the ESI) with a 3 A distance constraint between the
oxygen of S188 and the C4 of the succinimide moiety. As a
result, a loop sampled model with S188 stabilised by hydrogen
bonding to the oxygen of the succinimide moiety was obtained
with a Ramachandran plot of a quality comparable to that of
the original model. The loop-sampled model is shown in Fig. 2
(blue) for the S188C mutant following addition to MLA
maleimide 3 and energy minimisation. While the exact position
and functional importance of Loop-F in nAChRs is uncertain,
there is substantial experimental support for Loop-F flexibility,
e.g. different loop conformations in AChBP structures depos-
ited in the RCSB Protein Data Bank,19 high B-values and low
electron densities.20 Further, the length of Loop-F is different in
the a7 nAChR receptor compared to the templates. Thus the
loop-sampled model suggests an alternate F-Loop conforma-
tion supported by reaction data that is distinct from that
observed in the original model and X-ray crystal structures.11
In conclusion, we have synthesised and studied the reactivity
of five alkene-substituted maleimides (5–9) as Michael
acceptors. From this work, thiophilic reagents 3 and 4 were
developed from the known a7 nAChR antagonists MLA 1 and
the simplified analogue 2, and these were shown to covalently
attach to cysteine mutants selected based on a structural
model. This study of functional nAChRs using cysteine muta-
genesis in combination with thiophilic ligands complements
and confirms information afforded from recently reported
AChBP crystal structures. The study reveals differences in
reactivity that suggest different binding modes or more likely,
different Loop-F conformations depending on which ligand is
bound. The reactive probes 3 and 4 provide further scope to
19 H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov and P. E. Bourne, Nucleic Acids Res.,
2000, 28, 235.
20 L. A. H. Rohde, P. K. Ahring, M. L. Jensen, E. Ø. Nielsen,
D. Peters, C. Helgstrand, C. Krintel, K. Harpsøe, M. Gajhede,
J. S. Kastrup and T. Balle, J. Biol. Chem., 2012, 287, 4248.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 6699–6701 6701