Journal of the American Chemical Society
Article
111, 6810−6918. (b) Cragg, P. J. Supramolecular Chemistry: From
Biological Inspiration to Biomedical Applications; Springer; Dordecht,
London, 2010. (c) Stupp, S. I. Nano Lett. 2010, 10, 4783−4786.
(d) Zayed, J. M.; Nourel, N.; Rauwald, U.; Scherman, O. A. Chem. Soc.
Rev. 2010, 39, 2806−2816. (e) Steed, J. W., Atwood, J. L.
Supramolecular Chemistry, 2nd ed.; Wiley: Chichester, UK, 2009.
(f) Rosen, B. M.; Wilson, C. J.; Wilson, D. A.; Peterca, M.;
Mohammad, R. I.; Percec, V. Chem. Rev. 2009, 109, 6275−6540.
(2) (a) Tewari, A. K. Bioorg. Med. Chem. 2008, 16, 126−143.
(b) Prosinecki, V.; Fraisca, P. F. N.; Gomes, C. M. Curr. Proteomics
2007, 4, 44−52. (c) Searle, M. S. J. Chem. Soc., Perkin Trans. 2 2001,
1011−1020.
(3) Recent reviews and model systems: (a) Vasudev, P. G.;
Chatterjee, S.; Shamala, N.; Balaram, P. Chem. Rev. 2011, 111, 657−
689. (b) Graboroski, S. J. Chem. Rev. 2011, 111, 2597−2625.
(c) Nishio, M. Phys. Chem. Chem. Phys. 2011, 13, 13878−13900.
(d) Takahashi, O.; Kohno, Y.; Nishio, M. Chem. Rev. 2010, 110,
6049−6076. (e) Chen, Z.; Urban, N. D.; Gao, Y.; Zhang, W.; Deng, J.;
Zhu, J.; Zeng, X. C.; Gong, B. Org. Lett. 2011, 13, 4008−4011.
(f) Zhang, P.; Chu, H.; Li, X.; Feng, W.; Deng, P.; Yuan, L.; Gong, B.
Org. Lett. 2011, 13, 54−57. (g) Carroll, W. R.; Zhao, C.; Smith, M. D.;
Pellechia, P. J.; Shimizu, K. D. Org. Lett. 2011, 13, 4320−4323.
(h) Zondlo, N. J. Nat. Chem. Biol. 2010, 6, 567−568. (i) Gan, H.;
Gibb, B. C. Chem. Commun. 2012, 48, 1656−1658. (j) Gibb, C. L.;
Gibb, B. C. J. Am. Chem. Soc. 2011, 136, 7344−7347. (k) Laughrey, Z.;
Gibb, B. C. Chem. Soc. Rev. 2011, 363−386.
perhaps even CH−π interactions to bind alternative structural
motifs. The display of polar groups above and below this site
could then provide secondary or tertiary points of attachment
as the [2]-catenanes take advantage of herein. Although we
have no direct evidence for this binding mode in any DCC-
selected host−guest complexes, the studies described here
provide our first structural glimpses into the mechanisms of
molecular recognition by this adaptable class of compounds.
CONCLUSION
■
The [2]-catenane structures described herein contain many of
the hallmarks of a protein. (1) They are relatively large in size
(>3 kDa), with a hydrodynamic volume that is large enough to
benefit from NMR pulse sequences designed for macro-
molecules. (2) They have clear components of secondary,
tertiary, and quaternary structure, along with a very strong
sequence-dependent structure/stability relationship. (3) Like
proteins, they additionally contain distinct regions of variable
dynamic behavior (as revealed by H/D exchange). Despite
these many similarities, however, the [2]-catenanes simulta-
neously take on the properties of small-molecule receptors, and
are thus amenable to solid-state, solution-state, and gas-phase
characterization tools. Their structures can be readily
manipulated with non-biogenic amino acids to test the effect
of electronic and/or steric perturbations, they are amenable to
relative stability determinations via their self-assembly proper-
ties, as described in the next paper,14 and they self-assemble in
organic solvents. This balance of physical properties positions
them at a bridge point between proteins and small molecules,
and enables one to begin investigating how diverse non-
covalent interactions acting in a multi-valent format affect
structure, function, and stability in organic solvents, where the
balance of non-covalent forces differ from those in water. These
complex three-dimensional structures provide a promising
scaffold for pre-organization of functional groups needed to
create enzyme-like catalysts.
(4) A few recent model systems relating the protein folding:
(a) Zheng, H.; Comeforo, K.; Gao, J. J. Am. Chem. Soc. 2009, 131, 18−
19. (b) Bhayana, B.; Wilcox, C. S. Angew. Chem., Int. Ed. 2007, 46,
6833−6836. (c) Chen, J.; Im, W.; Brooks, C. L., III J. Am. Chem. Soc.
2006, 128, 3728−3736. (d) Gardner, R. R.; McKay, S. L.; Gellman, S.
H. Org. Lett. 2000, 2, 2335−2338. (e) Gardner, R. R.; Christianson, L.
A.; Gellman, S. H. J. Am. Chem. Soc. 1997, 119, 5041−5042.
(5) For reviews, see: (a) Otto, S. Acc. Chem. Res. 2012,
DOI: 10.1021/ar200246j. (b) Cougnon, F. B. L.; Sanders. Acc.
Chem. Res. 2012, DOI: 10.1021/ar200240m. (c) Miller, B. C., Ed.
Dynamic Combinatorial Chemistry. In Drug Discovery, Bioorganic
Chemistry and Material Science; Wiley: Hoboken, NJ, 2010. (d) Reek, J.
N. H., Otto, S., Eds. Dynamic Combinatorial Chemistry; Wiley-VCH:
Weinheim, 2010. (e) Ladame, S. Org. Biomol. Chem. 2008, 6, 219−
226. (f) Ludlow, R. F.; Otto, S. Chem. Soc. Rev. 2008, 37, 101−108.
(g) Lehn, J.-M. Chem. Soc. Rev. 2007, 36, 151−160. (h) Corbett, P. T.;
Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.; Sanders, J. K. M.; Otto,
S. Chem. Rev. 2006, 106, 3652−3711.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthesis of monomers and their physical data, solid-state
metrical parameters, physical data, HPLC traces, MS spectra
and various 2D NMR spectra (COSY, TOCSY, HSQC,
(6) Cousins, G. R. L.; Poulsen, S. A.; Sanders, J. K. M. Chem.
Commun. 1999, 1575−1576.
F
F
ROESY) of [2]-catenanes (F3dPh, 3b, HO3C, 4b), LC-MS/
́
(7) Chung, M.-K.; White, P. S.; Lee, S. J.; Gagne, M. R. Angew. Chem.,
Int. Ed. 2009, 48, 8683−8686.
MS analyses of 4b and H4a, crystal data of catenane 3dPh,
F3b, HO3C and F4b. This material is available free of charge via
F
F
(8) Lam, R. T. S.; Belenguer, A.; Roberts, S. L.; Naumann, C.;
Jarrosson, T.; Otto, S.; Sanders, J. K. M. Science 2005, 308, 667−669.
(9) (a) Chung, M.-K.; Severin, K.; Lee, S. J.; Waters, M. L.; Gagne,
́
M. R. Chem. Sci. 2011, 2, 744−747. (b) Ingerman, L. A.; Waters, M. L.
AUTHOR INFORMATION
Corresponding Author
J. Org. Chem. 2009, 74, 111−117. (c) Chung, M.-K.; Hebling, C. R.;
■
́
Jorgenson, J. W.; Severin, K.; Lee, S. J.; Gagne, M. R. J. Am. Chem. Soc.
2008, 130, 11819−11827. (d) Bulos, F.; Roberts, S. L.; Furlan, R. L.
E.; Sanders, J. K. M. Chem. Commun. 2007, 3092−3093. (e) Nicholas,
K. M.; Masaomi, M. J. Org. Chem. 2007, 72, 9308−9313. (f) Voshell, S.
Notes
The authors declare no competing financial interest.
́
M.; Lee, S. J.; Gagne, M. R. J. Am. Chem. Soc. 2006, 128, 12422−
12423. (g) Roberts, S. L.; Furlan, R. L. E.; Otto, S.; Sanders, J. K. M.
Org. Biomol. Chem. 2003, 1, 1625−1633.
ACKNOWLEDGMENTS
■
(10) (a) Robinson, J. L. Acc. Chem. Res. 2008, 41, 1278−1288.
(b) Francart, C.; Wieruszeski, J. M.; Tartar, A.; Lippens, G. J. Am.
Chem. Soc. 1996, 118, 7019−7027. (c) MacArthur, M. W. J. Mol. Biol.
1991, 218, 397−412. (d) Rose, G. D.; Gierasch, L. M.; Smith, J. A.
Adv. Protein Chem. 1985, 37, 1−109. (e) Kessier, H. Angew. Chem., Int.
Ed. 1982, 21, 512−523.
(11) (a) Nishio, M. Phys. Chem. Chem. Phys. 2011, 13, 13873−13900.
(b) Nishio, M.; Takahashi, O.; Kohno, Y. Chem. Rev. 2011, 110,
6049−6076. (c) Plevin, M. J.; Bryce, D. L.; Boisbouvier, J. Nature
We thank the Defense Threat Reduction Agency (DTRA) for
support (HDTRA1-10-1-0030). S.J.L. thanks the Army
Research Office for support. We thank Dr. Marc ter Horst
for helpful discussions of NMR spectroscopy techniques.
REFERENCES
■
(1) For several recent reviews of this broad topic, see:
(a) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011,
11428
dx.doi.org/10.1021/ja302345n | J. Am. Chem. Soc. 2012, 134, 11415−11429