Zinc Complexes of β-Octaalkyl-meso-(bromophenyl)-Substituted Porphyrins
phyrin Handbook (Eds.: K. M. Kadish, K. M. Smith, R. Guil-
ard), Academic Press, London, 2000, vol. 3, pp. 1–48.
a) J. A. A. W. Elemans, R. Hameren, R. J. M. Nolte, A. E.
Rowan, Adv. Mater. 2006, 18, 1251–1266; b) K. S. Suslick,
N. A. Rakow, M. E. Kosal, J.-H. Chou, J. Porphyrins Phthalo-
cyanines 2000, 4, 407–413; c) E. Deiters, V. Bulach, M. W. Hos-
seini, Chem. Commun. 2005, 3906–3908; d) P. Bhyrappa, S. R.
Wilson, K. S. Suslick, J. Am. Chem. Soc. 1997, 119, 492–8502;
e) S. George, I. Goldberg, Cryst. Growth Des. 2006, 6, 755–762;
f) M. E. Kosal, J.-H. Chou, S. R. Wilson, K. S. Suslick, Nat.
Mater. 2002, 1, 118–121.
a) J. M. Tour, Acc. Chem. Res. 2000, 33, 791–804; b) T. Malin-
ski in The Porphyrin Handbook (Eds.: K. M. Kadish, K. M.
Smith, R. Guilard), Academic Press, San Diego, CA, 2000, vol.
6. pp. 231–256; c) S. Fukuzumi in The Porphyrin Handbook
(Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic
Press, San Diego, CA, 2000, vol. 8, pp. 115–152.
a) R. W. Wagner, J. S. Lindsey, J. Seth, V. Palaniappan, D. F.
Bocian, J. Am. Chem. Soc. 1996, 118, 3996–3997; b) V. Balzani,
A. Credi, A. Venturi, Molecular Devices and Machines – A
Journey into the Nano World, Wiley-VCH, Weinheim, Ger-
many, 2003; c) G. S. Kottas, L. I. Larke, D. Horinek, J. Michl,
Chem. Rev. 2005, 105, 1281–1376; d) S. Saha, E. Johansson,
A. H. Flood, H.-R. Tseng, J. I. Zink, J. F. Stoddart, Chem. Eur.
J. 2005, 11, 6846–6858; e) E. R. Kay, D. A. Leigh, F. Zerbetto,
Angew. Chem. 2007, 119, 72; Angew. Chem. Int. Ed. 2007, 46,
72–191; f) J. Gómez-Segura, I. Díez-Pérez, N. Ishikawa, M.
Nakano, J. Veciana, D. Ruiz-Molina, Chem. Commun. 2006,
2866–2868; g) S. Egger, A. Ilie, S. Machida, T. Nakayama,
Nano Lett. 2007, 7, 3399–3404.
Zinc 5,15-Bis(4-bromophenyl)-3,7,13,17-tetramethyl-2,8,12,18-tet-
ra(n-pentyl)porphyrinate (ZnP-2): The synthesis of ZnP-2 is similar
to that of ZnP-1. A solution of H2P-2 (95.7 mg, 0.1 mmol) in
CHCl3 (30 mL) was mixed with zinc acetate (0.438 g, 2 mmol, ex-
cess). The yield of ZnP-2 was 95.7 mg (94%). 1H NMR (CDCl3,
298 K, 400 MHz): δ = 10.15 (s, 2 H, 10,20-H), 8.00 (d, J = 8.08 Hz,
4 H, 2,6-H), 7.90 (d, J = 8.34 Hz, 4 H, 3,5-H), 3.98 [t, J = 7.71 Hz,
8 H, 2,8,12,18-CH2(CH2)3CH3], 2.50 (s, 12 H, 3,7,13,17-CH3), 2.18
(m, 8 H, 2,8,12,18-CH2CH2CH2CH2CH3), 1.73 (qv, 8 H,
CH2CH2CH2CH2CH3), 1.55 (sc, 8 H, 13,17-H2CH2CH2CH2CH3),
[4]
[5]
0.99 (t, J = 7.26 Hz, 12 H, 13,17-CH2CH2CH2CH2CH3) ppm. UV/
Vis (CHCl3): λ [log(ε/m–1 cm–1)] = 575 [3.16], 540 [3.38], 412 nm
[4.68]. HRMS (ESI): calcd. for [C56H69Br2N4Zn]+ 1021.3160 [M +
H]+; found 1021.3280.
X-ray Diffraction Analysis: The data collection and structure-re-
finement data for compounds H2P-1, H2P-2, ZnP-1, ZnP-2 are
[6]
presented in Table 1. Single-crystal X-ray diffraction experiments
were carried out with a Bruker SMART APEX II diffractometer
and a CCD area detector (graphite monochromator, Mo-Kα radia-
tion, λ = 0.71073 Å, ω-scans). The semiempirical method SAD-
ABS[50] was applied for the absorption correction. The structures
were solved by direct methods and refined by the full-matrix, least-
squares technique against F2 with anisotropic displacement param-
eters for all non-hydrogen atoms. In compounds H2P-1 and ZnP-
2, carbon atoms C(38)–C(40) and C(42)–C(46) of the pentyl sub-
stituents are disordered over two sites with occupancies of 0.7:0.3
and 0.6:0.4, respectively. All the hydrogen atoms in the complexes
were placed geometrically and included in the structure-factor cal-
culations in the riding-motion approximation. All the data re-
[7]
a) M. G. H. Vicente, L. Jaquinod, K. M. Smith, Chem. Com-
mun. 1999, 1771–1782; b) J. Wojaczynski, L. Latos-Grazynski,
Coord. Chem. Rev. 2000, 204, 113–171.
duction and further calculations were performed with the aid of the
SAINT[51] and SHELXTL-97[52] program packages. CCDC-867054
(for H2P-1), -867055 (for H2P-2), -867056 (for ZnP-1) and -867057
(for ZnP-2) contain the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[8]
[9]
a) A. Satake, Y. Kobuke, Tetrahedron 2005, 61, 13–41; b) E.
Iengo, E. Zangrando, R. Minatel, E. Alessio, J. Am. Chem.
Soc. 2002, 124, 1003–1010.
a) T. Ren, Chem. Rev. 2008, 108, 4185–4207; b) M. O. Senge,
J. Richter, J. Porphyrins Phthalocyanines 2004, 8, 934–953; c)
A. K. Burrell, D. L. Officer, P. G. Plieger, D. C. W. Reid, Chem.
Rev. 2001, 101, 2751–2796; d) W. M. Sharman, J. E. V. Lier, J.
Porphyrins Phthalocyanines 2000, 4, 441; e) J. Setsune, J. Por-
phyrins Phthalocyanines 2004, 8, 93; f) F. Atefi, D. P. Arnold,
J. Porphyrins Phthalocyanines 2008, 12, 801.
E. A. Mikhalitsyna, V. S. Tyurin, I. A. Zamylatskov, V. N.
Khrustalev, I. P. Beletskaya, Dalton Trans. 2012, 41, 7624–
7636.
a) J. B. Kim, J. J. Leonard, F. R. Longo, J. Am. Chem. Soc.
1972, 94, 3986–3992; b) J. S. Lindsey, H. C. Hsu, I. C. Schrei-
man, Tetrahedron Lett. 1986, 27, 4969–4970; c) J. S. Lindsey,
I. C. Scheriman, H. C. Hsu, P. C. Kearney, A. M. Margueret-
taz, J. Org. Chem. 1987, 52, 827–836.
a) J. E. Baldwin, P. Perlmutter, Top. Curr. Chem. 1984, 121, 181;
b) V. Král, M. Pankova, J. Gunterova, M. Belohradsky, P. J.
Anzenbacher, Collect. Czech. Chem. Commun. 1994, 59, 639;
c) R. Young, C. K. Chang, J. Am. Chem. Soc. 1985, 107, 898;
d) H. K. Hombrecher, G. Horter, C. Arp, Tetrahedron 1992, 48,
9451.
a) M. J. Gunter, L. N. Mander, J. Org. Chem. 1981, 46, 4792; b)
J. S. Manka, D. S. Lawrence, Tetrahedron Lett. 1989, 30, 6989.
a) J. S. Lindsey in The Porphyrin Handbook. (Eds.: K. M. Kad-
ish, K. M. Smith, R. Guilard), San Diego, Academic Press,
2000, pp. 45–118; b) G. R. Geier, J. B. Callinan, P. D. Rao, J. S.
Lindsey, J. Porphyrins Phthalocyanines 2001, 5, 810–823; c)
D. T. Gryko, M. Tasior, Tetrahedron Lett. 2003, 44, 3317–3321;
d) H. Yamada, K. Kushibe, S. Mitsuogi, T. Okujima, H. Uno,
N. Ono, Tetrahedron Lett. 2008, 49, 4731–4733; e) A. Wiehe,
Y. M. Shaker, J. C. Brandt, S. Mebs, M. O. Senge, Tetrahedron
2005, 61, 5535–5564.
Acknowledgments
[10]
[11]
This work was supported by the Russian Foundation for Basic Re-
search (grant#11-03-12160-ofi-m-2011), the Russian Academy of
Sciences (Program of Division of Chemistry and Materials Science
N6 “Chemistry and Physical Chemistry of Supramolecular Systems
and Atomic Clusters”) and the Ministry of Education and Science
of the Russian Federation.
[12]
[1] a) K. M. Smith, Porphyrins and Metaloporphyrins, Elsevier,
Amsterdam, 1972; b) K. S. Suslick in The Porphyrin Handbook
(Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic
Press, NewYork, 2000, vol. 4, pp. 41–64; c) D. Dolphin in The
Porphyrins (Ed.: D. Dolphin), Academic Press, New York,
1978, vol. 3.
[2] a) G. McDermott, S. M. Prince, A. A. Freer, A. M. Haw-
thornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, N. W. Isaacs,
Nature 1995, 374, 517; b) S. Bahatyrova, R. N. Frese, C. A.
Siebert, J. D. Olsen, K. O. van der Werf, R. van Grondelle,
R. A. Niederman, P. A. Bullough, C. Otto, C. N. Hunter, Na-
ture 2004, 430, 1058.
[3] a) I. P. Beletskaya, V. S. Tyurin, A. Yu. Tsivadze, R. Guilard,
C. Stern, Chem. Rev. 2009, 109, 1659–1713; b) C. M. Drain, A.
Varotto, I. Radivojevic, Chem. Rev. 2009, 109, 1630–1658; c)
J. K. M. Sanders, N. Bampos, Z. Clyde-Watson, S. L. Darling,
J. C. Hawley, H.-J. Kim, C. C. Mak, S. J. Webb in The Por-
[13]
[14]
[15]
D. Harris, A. W. Johnson, R. Gaete-Holmes, Bioorg. Chem.
1980, 9, 63; A. Osuka, H. Tomita, K. Maruyama, Chem. Lett.
Eur. J. Inorg. Chem. 2012, 5979–5990
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5989