3932
T. Takeda et al. / Tetrahedron Letters 53 (2012) 3930–3933
located at the equatorial position in transition states 8 and 80.
Me
RL
The preferential formation of major diastereomer 3 via the transi-
tion state 8 would be due to the destabilization of transition state
80 by steric repulsion between the substituents of allyltitanocene
(R1) and cyclohexanone (R2).
In conclusion, it has been shown that the reaction of allyltita-
nocenes with both cyclic and acyclic a-chiral ketones is a versatile
R
RS
α
H
Ti
O
RL β'
β
R
Me OH
3
RS
SPh
major
H
(α,β'-syn-α,β-anti)
7
and straightforward method for the preparation of tert-homoallylic
alcohols bearing three consecutive stereogenic centers with high
diastereoselectivity.9 The low basicity of allyltitanocenes enables
their use for the allylation of ketones possessing acidic hydrogens
such as 2-phenylcyclohexanone.
Further study on the construction of acyclic systems with mul-
tistereogenic centers using allyltitanium reagents is currently
underway.
O
RL
+
R
TiCp2SPh
Me
1
RS
2
Me
R
Acknowledgment
RS
Ti
α
R
H
RL
β'
β
O
This work was supported by Grant-in-Aid for Scientific Re-
search (No. 21350026) from the Ministry of Education, Culture,
Sports, Science and Technology, Japan
RS
SPh
Me OH
3'
H
minor
(α,β'-anti-α,β-anti)
RL
7'
Supplementary data
Scheme 2. Stereochemical pathway of the reaction of allyltitanocenes
acyclic ketones 2a,b.
1 with
Supplementary data associated with this article can be found,
selectivity is interpreted based on the argument that the addition
proceeds via the formation of transition states 7 and 70 in which
the larger substituent attached to the carbonyl group occupies an
equatorial position. The isomers 3 and 30 are attributed to the rel-
References and notes
1. (a) Stereoselective Synthesis, Methods of Organic Chemistry (Houben-Weyl), E21
ed.; Helmchen, G., Hoffmann, R., Mulzer, J., Schaumann, E., Eds.; Thieme:
Stuttgart, 1996; Vol. 3.; (b) Chemler, S. R.; Roush, W. R. In Otera, J., Ed.; Modern
Carbonyl Chemistry; Wiley-VCH: Weinheim, 2000. Chapter 10; (c) Denmark, S.
E.; Almstead, N. G. In Otera, J., Ed.; Modern Carbonyl Chemistry; Wiley-VCH:
Weinheim, 2000. Chapter 11; (d) Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev.
2000, 100, 2835; (e) Szymoniak, J.; Moise, C. In Marek, I., Ed.; Titanium and
Zirconiums in Organic Synthesis; Wiley-VCH: Weinheim, 2002. Chapter 13.
2. For selected examples, see: (a) Hoffmann, R. W.; Zeib, H. J.; Landner, W.; Tabche,
S. Chem. Ber. 1982, 115, 2357; (b) Keck, G. E.; Boden, E. P. Tetrahedron Lett. 1984,
25, 1879; (c) Keck, G. E.; Abbott, D. E. Tetrahedron Lett. 1984, 25, 1883; (d)
Yamamoto, Y.; Yatagai, H.; Ishihara, Y.; Maeda, N.; Maruyama, K. Tetrahedron
1984, 40, 2239; (e) Yamamoto, Y.; Komatsu, T.; Maruyama, K. J. Organomet.
Chem. 1985, 285, 31; (f) Roush, W. R.; Adam, M. A.; Harris, D. J. J. Org. Chem. 1985,
50, 2000; (g) Hoffmann, R. W.; Weidmann, U. Chem. Ber. 1985, 118, 3966; (h)
Coxon, J. M.; van Eyk, S. J.; Steel, P. J. Tetrahedron Lett. 1985, 26, 6121; (i) Roush,
W. R.; Halterman, R. L. J. Am. Chem. Soc. 1986, 108, 294; (j) Brown, H. C.; Bhat, K.
S.; Randad, R. S. J. Org. Chem. 1987, 52, 3701; (k) Garcia, J.; Kim, B. M.;
Masamune, S. J. Org. Chem. 1987, 52, 4831; (l) Collins, S.; Dean, W. P.; Ward, D. G.
Organometallics 1988, 7, 2289; (m) Mulzer, J.; Schulze, T.; Strecker, A.; Denzer,
W. J. Org. Chem. 1988, 53, 4098; (n) Brown, H. C.; Bhat, K.; Randad, R. S. J. Org.
Chem. 1989, 54, 1570; (o) Martin, S. F.; Li, W. J. Org. Chem. 1989, 54, 6129; (p)
Hoffmann, R. W.; Brinkmann, H.; Frenking, G. Chem. Ber. 1990, 123, 2387; (q)
Roush, W. R.; Grover, P. T. Tetrahedron Lett. 1990, 31, 7567; (r) Batey, R. A.;
Thadani, A. N.; Smil, D. V.; Lough, A. J. Synthesis 2000, 990; (s) Thadani, A. N.;
Batey, R. A. Tetrahedron Lett. 2003, 44, 8051; (t) Rauniyar, V.; Hall, D. G. Angew.
Chem., Int. Ed. 2006, 45, 2426; (u) Tanaka, K.; Fujimori, Y.; Saikawa, Y.; Nakata,
M. J. Org. Chem. 2008, 73, 6292; (v) Vogt, M.; Ceylan, S.; Kirschning, A.
Tetrahedron 2010, 66, 6450; (w) Kim, H.; Ho, S.; Leighton, J. L. J. Am. Chem. Soc.
2011, 133, 6517; (x) Sancho-Sanz, I.; Miguel, D.; Millán, A.; Estévez, R. E.; Oller-
López, J. L.; Álvarez-Manzaneda, E.; Robles, R.; Cuerva, J. M.; Justicia, J. J. Org.
Chem. 2011, 76, 732.
ative configuration between C (a
) and C (b0). The preferential for-
mation of major diastereomer 3 is well explained on the basis of
the Felkin-Anh conformational model of the transition state 7
which is more stable than 70 destabilized by RL–R and RL–H inter-
actions. Diastereoselectivity of the reaction of
a-chiral aldehydes
with (E)-lithium and boron enolates has been explained in a simi-
lar manner.8
The stereochemical outcome of the addition of allyltitanocenes
1 to cyclohexanones 2cꢀe is also explained by the six-membered
cyclic transition states similar to the reaction of cinnamylzinc re-
agents4 (Scheme 3). The
a-carbon bearing the
a
substituent is
R1
R2
R2
O
Ti
R1
OH
SPh
R2
H
8
3
O
R1
TiCp2SPh +
1
2
3. (a) Sato, K.; Kira, M.; Sakurai, H. J. Am. Chem. Soc. 1989, 111, 6429; (b) Taniguchi,
M.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1995, 68, 645; (c) Kumar, S.;
Kaur, P.; Mittal, A.; Singh, P. Tetrahedron 2006, 62, 4018; (d) Babu, S. A.; Yasuda,
M.; Baba, A. J. Org. Chem. 2007, 72, 10264.
4. Dunet, G.; Mayer, P.; Knochel, P. Org. Lett. 2008, 10, 117.
5. Yatsumonji, Y.; Nishimura, T.; Tsubouchi, A.; Noguchi, K.; Takeda, T. Chem. Eur. J.
2009, 15, 2680.
R1
R2
Ti
O
R1
6. Takeda, T.; Nishimura, T.; Yatsumonji, Y.; Noguchi, K.; Tsubouchi, A. Chem. Eur. J.
2010, 16, 4729.
7. CCDC 86577 (3d), 866578 (3i), and 870056 (6) contain supplementary
crystallographic data for this paper. Also see the Supplementary data for details.
8. Roush, W. R. J. Org. Chem. 1991, 56, 4151.
9. Typical procedure: Preparation of 3-methyl-2,4-diphenylhex-5-en-3-ol (3b): To a
THF (12 mL) suspension of Cp2TiCl2 (996 mg, 4.0 mmol) was added a 1.54 M
hexane solution of BuLi (5.2 mL, 8.0 mmol) at ꢀ78 °C under argon. After 1 h, a
THF (8 mL) solution of 4a (453 mg, 2.0 mmol) was added dropwise over 5 min to
OH
SPh
R2
H
8'
3'
Scheme 3. Stereochemical pathway of the reaction of allyltitanocenes
cyclohexanones 2c–e.
1 with