3888
K. Arunkumar et al. / Tetrahedron Letters 53 (2012) 3885–3889
L-proline
ated method, the present process represents a useful but relatively
safer alternative where the zeolite H-beta used can potentially be
recycled. -Proline on the other hand facilitated the coupling reac-
CuI aq K2CO3
O
L
tion of 2-methyl-4-[(trimethylsilyl)ethynyl]thiazole with (het-
ero)aryl halides (modified Sonogashira reaction) under Pd-Cu
catalysis in the presence of aqueous K2CO3 affording an improved
method for the synthesis of corresponding 4-alkynyl substituted
thiazole derivatives. A variety of (hetero)aryl iodides and bromides
possessing carbonyl, hydroxyalkyl, acyloxyalkyl, ester, or ether
substituents were employed to give the coupled products in good
yields. The overall process may find uses in the generation of li-
braries of small molecules of potential pharmacological interest
based on 4-alkynyl substituted thiazole.
O
N
H
N
Cu(I)
N
H
N
O
Cu
Si
S
O
S
aq K2CO3
5
L
E-1
R[PdII]X
RX
L
5
+
6
(X = I, Br)
L-proline
CuI
L
N
Pd0L2
PdCl2(PPh3)2
Pd R
L
E-2 (L = L-proline)
S
aq K2CO3
Acknowledgements
7
K.A. thanks Dr. V. Dahanukar and Mr. A. Mukherjee for encour-
agements and the analytical group of DRL for spectral support.
Scheme 2. Proposed reaction mechanism for the modified Sonogashira coupling of
5 with 6 in the presence of -proline.
L
Supplementary data
The use of K2CO3 in place of Et3N and TBAF was found to be
effective as the desired product 7a was isolated in 80% yield (Table
2, entry 1). The use of other bases, such as Cs2CO3, diisopropyl
ethyl amine (DIPA), or Et3N decreased the product yield (Table 2,
entries 2–4). Changing the solvent from DMF to toluene (Table 2,
entry 5) or i-PrOH (Table 2, entry 6) or the copper catalyst from
CuI to CuBr (Table 2, entry 7) or Cu2O (Table 2, entry 8) or
Cu(OAc)2 (Table 2, entry 9) did not provide good yield of 7a. Inter-
estingly, the use of water as a co-solvent though did not improve
the product yield, afforded a much purer product (Table 2, entry
10) perhaps due to the enhanced solubility of K2CO3 in the aque-
Supplementary data associated with this article can be found, in
References and notes
1. (a) Masquelin, T.; Obrecht, D. Tetrahedron 2001, 57, 153; (b) Zabriskie, T. M.;
Mayne, C. L.; Ireland, C. M. J. Am. Chem. Soc. 1988, 110, 7919; (c) Hara, M.;
Asano, K.; Kawamoto, I.; Takiguchi, I.; Katsumata, S.; Takahashi, K.; Nakano, H.
J. J. Antibiot. 1988, 42, 1768; (d) Crews, P.; Kakou, Y.; Quinoa, E. J. Am. Chem. Soc.
1988, 110, 4365; (e) Metzger, J. V. Chemistry of Heterocyclic Compounds; Wiley:
New York, NY, 1979. p 34; (f) Metzger, J. V. In Thiazoles and their Benzo
Derivatives; Potts, K. T., Ed.; Pergamon: New York, NY, 1984; Vol. 6, (g)
Rosowsky, A.; Mota, C. E.; Wright, J. E.; Ereisheim, J. H.; Mc Cormack, J. J.;
Queener, C. F. J. Med. Chem. 1993, 36, 3103; (h) Bousquet, E.; Romeo, G.;
Guererra, F.; Caruso, A.; Amico-Roxas, M. Farmaco Ed. Sci. 1985, 40, 869; (i)
Dave, C. G.; Shah, P. H.; Shah, A. B.; Dave, K. C.; Patal, V. J. J. Indian Chem. Soc.
1989, 66, 48.
2. Varney, M. A.; Gereau, R. W. I. Curr. Drug Targets: CNS Neurol. Disord. 2002, 1,
283.
3. Brodkin, J.; Busse, C.; Sukoff, S. J.; Varney, M. A. Pharmacol. Biochem. Behav.
2002, 73, 359.
4. Spooren, W. P.; Vassout, A.; Neijt, H. C.; Kuhn, R.; Gasparini, F.; Roux, S.; Porsolt,
R. D.; Gentsch, C. J. Pharmacol. Exp. Ther. 2000, 295, 1267.
5. Spooren, W. P.; Schoeffter, P.; Gasparini, F.; Kuhn, R.; Gentsch, C. Eur. J.
Pharmacol. 2002, 435, 161.
ous reaction medium. Thus, the combination of
L-proline,
(PPh3)2PdCl2, CuI, and K2CO3 in H2O–DMF was found to be the best
among all the conditions tested. A variety of aryl iodides (6) were
coupled with 5 under this condition to afford the corresponding 4-
alkynyl substituted thiazole derivatives (7) in good yields (Table
3).20 The presence of carbonyl, hydroxyalkyl, acyloxyalkyl, ester,
or ether substituents on the aromatic ring of 6 was well tolerated
and the reaction proceeded smoothly in all these cases. The reac-
tion also proceeded well when 2-bromothiophene derivatives
were employed.
The mechanism of the Pd-Cu mediated coupling of 5 with 6 can
be envisaged as shown in Scheme 2. The reaction seems to proceed
via desilylation21 of compound 5 in the presence of aqueous K2CO3
which subsequently forms the corresponding copper acetylide (E-
6. Tatarczynska, E.; Klodzinska, A.; Chojnacka-Wojcik, E.; Palucha, A.; Gasparini,
F.; Kuhn, R.; Pilc, A. Br. J. Pharmacol. 2001, 132, 1423.
7. Klodzinska, A.; Tatarczynska, E.; Chojnacka-Wojcik, E.; Pilc, A. Pol. J. Pharmacol.
2000, 52, 463.
8. Schulz, B.; Fendt, M.; Gasparini, F.; Lingenhohl, K.; Kuhn, R.; Koch, M.
Neuropharmacology 2001, 41, 1.
1) via reacting with L
-proline chelated Cu(I) species.22 The interme-
diate E-1 then undergoes trans-metallation with the organo palla-
dium complex RPd(II)X generated from RX and the Pd(0) species
produced in situ to give intermediate E-2. It is evident from entry
3 (vs other entries) of Table 1 and entry 10 (vs other entries) of Ta-
9. Busse, C. S.; Brodkin, J.; Tattersall, D.; Anderson, J. J.; Warren, N. A.; Tehrani, L.;
Bristow, L. J.; Varney, M. A.; Cosford, N. D. P. Neuropsychopharmacology 1971,
2004, 29.
10. Klodzinska, A.; Tatarczynska, E.; Chojnacka-Wojcik, E.; Nowak, G.; Cosford, N.
D. P.; Pilc, A. Neuropharmacology 2004, 47, 342.
ble 2 that
L
-proline in the presence of aqueous K2CO3 played a
11. Chiamulera, C.; Epping-Jordan, M. P.; Zocchi, A.; Marcon, C.; Cottiny, C.;
Tacconi, S.; Corsi, M.; Orzi, F.; Conquet, F. Nat. Neurosci. 2001, 4, 873.
12. Cosford, N. D. P.; Tehrani, L.; Roppe, J.; Schweiger, E.; Smith, N. D.; Anderson, J.;
Bristow, L.; Brodkin, J.; Jiang, X.; McDonald, I.; Rao, S.; Washburn, M.; Varney,
M. A. J. Med. Chem. 2003, 46, 204.
13. Shetty, H. U.; Zoghbi, S. S.; Siméon, F. G.; Liow, J. S.; Brown, A. K.; Kannan, P.;
Innis, R. B.; Pike, V. W. J. Pharmacol. Exp. Ther. 2008, 327, 727.
14. (a) Roppe, J. R.; Wang, B.; Huang, D.; Tehrani, L.; Kamenecka, T.; Schweiger, E.
J.; Anderson, J. J.; Brodkin, J.; Jiang, X.; Cramer, M.; Chung, J.; Reyes-Manalo, G.;
Munoz, B.; Cosford, N. D. Bioorg. Med. Chem. Lett. 2004, 14, 3993; (b) Iso, Y.;
Grajkowska, E.; Wroblewski, J.; Davis, J.; Goedders, N. E.; Johnson, K. M.;
Sankaer, S.; Roth, B. L.; Tuecckmantel, W.; Kozikowski, A. P. J. Med. Chem. 2006,
49, 1080.
favorable role in generating Pd(0) species in situ.23 The intermedi-
ate E-2 on reductive elimination of Pd(0) provided the expected
product 7 along with the Pd(0) species to complete the catalytic cy-
cle. The observed suppression of oxidative homocoupling reaction
could be explained by the chelating effect of L-proline which per-
haps prevented the copper acetylide to participate in the homo-
coupling reaction thereby diminishing the formation of undesired
side product.
In conclusion, zeolite H-beta facilitated the reaction of a-chloro
15. Sen, S. E.; Smith, S. M.; Sullivan, K. A. Tetrahedron 1999, 55, 12657.
16. Ferino, I.; Monaci, R.; Rombi, E.; Solinas, V.; Magnoux, P.; Guisnet, M. J. Appl.
Catal. A 1999, 183, 303.
17. Bhaskar, P. M.; Loganathan, D. Synlett 1999, 129.
18. Gaare, K.; Akporiaye, D. J. Mol. Catal. A: Chem. 1996, 109, 177.
acetyl chloride with 1,2-bis-trimethyl silyl acetylene to give
1-chloro-4-(trimethylsilyl)but-3-yn-2-one which on treatment
with thioacetamide afforded 2-methyl-4-[(trimethylsilyl)ethy-
nyl]thiazole. In comparison to the previously reported AlCl3 medi-