1088
M. Ueda et al.
LETTER
(3) (a) Tsukamoto, H.; Sato, M.; Kondo, Y. Chem. Commun.
2004, 1200. (b) Kayaki, Y.; Koda, T.; Ikariya, T. Eur. J.
Org. Chem. 2004, 4989. (c) Tsukamoto, H.; Uchiyama, T.;
Suzuki, T.; Kondo, Y. Org. Biomol. Chem. 2008, 6, 3005.
(d) Kantam, M. L.; Kumar, K. B. S.; Sreedhar, B. J. Org.
Chem. 2008, 73, 320.
(4) Rh- and Ni-catalyzed cross-coupling reactions of allylic
acetates, allylic amines, and allylic alcohols with
arylboronic acids also have been reported, but, in these
reactions, the range of applicable substrates was very
narrow. (a) Rh: Kabalka, G. W.; Dong, G.; Venkataiah, B.
Org. Lett. 2003, 5, 893 . Ni: (b) Trost, B. M.; Spagnol, M.
D. J. Chem. Soc., Perkin Trans. 1 1995, 2083. (c) Chung,
K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans.
1 2000, 15.
(5) (a) Kabalka, G. W.; Yao, M.-L.; Borella, S.; Wu, Z. Chem.
Commun. 2005, 2492. (b) Kabalka, G. W.; Yao, M.-L.;
Borella, Z.; Wu, Z.; Ju, J.-H.; Quick, T. J. Org. Chem. 2008,
73, 2668.
(6) (a) Leadbeater, N. E.; Marco, M. Angew. Chem. Int. Ed.
2003, 42, 1407. (b) Leadbeater, N. E.; Marco, M. J. Org.
Chem. 2003, 68, 5660. (c) Yan, J.; Zhu, M.; Zhou, Z. Eur. J.
Org. Chem. 2006, 2060.
(7) Shirakawa, E.; Hayashi, Y.; Itoh, K.; Watabe, R.; Uchiyama,
N.; Konagaya, W.; Masui, S.; Hayashi, T. Angew. Chem. Int.
Ed. 2012, 51, 218.
(8) Scrivanti, A.; Beghetto, V.; Bertoldini, M.; Matteoli, U. Eur.
J. Org. Chem. 2011, 264.
(9) We also tested the reactivity of other organoboronic acid
derivatives. Potassium 4-methoxyphenyltrifluoroborate was
able to react with 1a, but the yield was low (25%). Pinacol
ester of 1a did not work as a substrate.
(10) The use of Cs2CO3 in the absence of H2O gave 3aa in a
moderate yield (60%).
(11) In the general conditions, phenylboronic acid (1h) gave the
cross-coupling product 3ha in a poor yield (7% yield), and
the reaction of 4-acetylphenylboronic acid with 2a did not
give the corresponding product.
(12) (a) Yamada, Y. M. A.; Takeda, K.; Takahashi, H.; Ikegami,
S. J. Org. Chem. 2003, 68, 7733. (b) Alacid, E.; Nájera, C.
Org. Lett. 2008, 10, 5011.
(13) (a) Huang, X.-T.; Chen, Q.-Y. J. Org. Chem. 2001, 66,
4651. (b) Loy, R. N.; Sanford, M. S. Org. Lett. 2011, 13,
2548.
(14) (a) Petasis, N. A.; Zavialov, I. A. Tetrahedron Lett. 1996, 37,
567. (b) Salzbrunn, S.; Simon, J.; Prakash, G. K. S.; Petasis,
N. A.; Olah, G. A. Synlett 2000, 1485. (c) Prakash, G. K. S.;
Panja, C.; Mathew, T.; Surampudi, V.; Petasis, N. A.; Olah,
G. A. Org. Lett. 2004, 6, 2205. (d) Lee, S.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2007, 129, 15438. (e) Stefani, H.
A.; Cella, R.; Vieira, A. S. Tetrahedron 2007, 63, 3623.
(f) Vieira, A. S.; Ferreira, F. P.; Fiorante, P. F.; Guadagnin,
R. C.; Stefani, H. A. Tetrahedron 2008, 64, 3306.
(g) Vieira, A. S.; Fiorante, P. F.; Hough, T. L. S.; Ferreira, F.
P.; Ludtke, D. S.; Stefani, H. A. Org. Lett. 2008, 10, 5215.
(h) Mitchell, T. A.; Bode, J. W. J. Am. Chem. Soc. 2009, 131,
18057. (i) Zeng, J.; Vedachalam, S.; Xiang, S.; Liu, X.-W.
Org. Lett. 2011, 13, 42. (j) Molander, G. A.; Cavalcanti, L.
N. J. Org. Chem. 2011, 76, 7195. (k) Larouche-Gauthier,
R.; Elford, T. G.; Aggarwal, V. J. Am. Chem. Soc. 2011, 133,
16794.
In summary, we have developed an efficient transition-
metal-free carbon–carbon bond-forming reaction with
various allylic bromides using aryl- and vinylboronic
acids under the mild reaction conditions.15 A transition-
metal-free cross-coupling reaction has some benefits such
as low cost, environmental benignity, easy operation, and
avoidance of the need to eliminate trace metals from the
final compounds. Therefore, we believe that the present
transition-metal-free system will be a useful tool in cross-
coupling chemistry.
Acknowledgment
This work was supported by a Grant-in Aid for Scientific Research
on Innovative Areas (No. 2105) from the MEXT.
References and Notes
(1) (a) Moreno-Mañas, M.; Pajuelo, F.; Pleixats, R. J. Org.
Chem. 1995, 60, 2396. (b) Cortes, J.; Moreno-Mañas, M.;
Pleixats, R. Eur. J. Org. Chem. 2000, 239. (c) Moreno-
Mañas, M.; Pleixats, R.; Villarroya, S. Organometallics
2001, 20, 4524. (d) Botella, L.; Nájera, C. J. Organomet.
Chem. 2002, 663, 46. (e) Alonso, D. A.; Nájera, C.;
Pacheco, M. C. J. Org. Chem. 2002, 67, 5588. (f) Llobet,
A.; Masllorens, E.; Rodríguez, M.; Roglans, A.; Benet-
Buchholz, J. Eur. J. Inorg. Chem. 2004, 1601. (g) Nájera,
C.; Gil-Moltó, J.; Karlström, S. Adv. Synth. Catal. 2004, 346,
1798. (h) Singh, R.; Viciu, M. S.; Kramareva, N.; Navarro,
O.; Nolan, S. P. Org. Lett. 2005, 7, 1829. (i) Kabalka, G.
W.; Dadush, E.; Al-Masum, M. Tetrahedron Lett. 2006, 47,
7459. (j) Srimani, D.; Sarkar, A. Tetrahedron Lett. 2008, 49,
6304. (k) Gerbino, D. C.; Mandolesi, S. D.; Schmalz, H.-G.;
Podestá, J. C. Eur. J. Org. Chem. 2009, 3964. (l) Alacid,E.;
Nájera, C. J. Organomet. Chem. 2009, 694, 1658.
(m) Crociani, B.; Antonaroli, S.; Burattini, M.; Paoli, P.;
Rossi, P. Dalton. Trans. 2010, 39, 3665. (n) Ghosh, R.;
Adarsh, N. N.; Sarkar, A. J. Org. Chem. 2010, 75, 5320.
(o) Civicos, J. F.; Alonso, D. A.; Nájera, C. Adv. Synth.
Catal. 2011, 353, 1683.
(2) (a) Uozumi, Y.; Danjo, H.; Hayashi, T. J. Org. Chem. 1999,
64, 3384. (b) Badone, D.; Baron, M.; Cardamone, R.;
Ielmini, A.; Guzzi, U. J. Organomet. Chem. 1997, 62, 7170.
(c) Chen, H.; Deng, M.-Z. J. Organomet. Chem. 2000, 603,
189. (d) Bouyssi, D.; Gerusz, V.; Balme, G. Eur. J. Org.
Chem. 2002, 2445. (e) Kabalka, G. W.; Al-Masum, M. Org.
Lett. 2006, 8, 11. (f) Mino, T.; Kajiwara, K.; Shirae, Y.;
Sakamoto, M.; Fujita, T. Synlett 2008, 2711. (g) Ohmiya,
H.; Makida, Y.; Tanaka, T.; Sawamura, M. J. Am. Chem.
Soc. 2008, 130, 17276. (h) Yamada, Y. M. A.; Watanabe,
T.; Torii, K.; Uozumi, Y. Chem. Commun. 2009, 5594.
(i) Maslak, V.; Tokic-Vujosevic, Z.; Saicic, R. N.
Tetrahedron Lett. 2009, 50, 1858. (j) Nishikata, T.;
Lipshutz, B. H. J. Am. Chem. Soc. 2009, 131, 12103.
(k) Ohmiya, H.; Makida, Y.; Li, D.; Tanabe, M.; Sawamura,
M. J. Am. Chem. Soc. 2010, 132, 879. (l) Pigge, F. C.
Synthesis 2010, 1745. (m) Ohmiya, H.; Yokokawa, N.;
Sawamura, M. Org. Lett. 2010, 12, 2438. (n) Li, D.;
Tanaka, T.; Ohmiya, H.; Sawamura, M. Org. Lett. 2010, 12,
3344. (o) Makida, Y.; Ohmiya, H.; Sawamura, M. Chem.
Asian. J. 2011, 6, 410.
(15) Typical Procedure for a Transition-Metal-Free Cross-
Coupling Reaction of Allylic Bromides with Aryl- and
Vinylboronic Acids: A mixture of 4-benzyloxyphenyl
boronic acid (1d; 0.65 mmol, 1.3 equiv), cinnamyl bromide
(2a; 0.5 mmol), and Cs2CO3 (0.75 mmol, 1.5 equiv) in
CH2Cl2–H2O (1.65 mL, 10:1) was stirred at 60 °C for 18 h.
Synlett 2012, 23, 1085–1089
© Thieme Stuttgart · New York