8024
With the optimal conditions selected, the hydrogenation of the racemic oxime was run at
multi-kilo scale at 0–5°C (cis/trans 25:1, 94% assay yield). After filtration of the catalyst, ion
exchange followed by concentration and addition of (S)-mandelic acid gave the (S,S,S) salt
(>99% ee) free of the trans isomer in 40% overall yield from the racemic oxime.17
In summary, we have developed a highly selective synthesis of S,S-aminochromanol in 32%
overall yield from chromanone. The synthesis involves a pivotal cis-selective hydrogenation of
the hydroxyoxime either as a racemate or single enantiomer form. We are currently exploring
the generality of the Pd/CꢁHBr catalyst system.
Acknowledgements
We would like to thank Barry Trost and Barry Sharpless for helpful discussions.
References
1. Vacca, J. P.; Dorsey, B. D.; Schleif, W. A.; Levin, R. B.; McDaniel, S. L.; Darke, P. L.; Zugay, J; Quintero, J.
C.; Blahy, O. M.; Roth, E.; Sardana, V. V.; Schlabach, A. J.; Graham, P. I.; Condra, J. H.; Gotlib, L.; Holloway,
M. K.; Lin, J.; Chen, I.-W.; Vastag, K.; Ostovic, D.; Anderson, P. S.; Emini, E. A.; Huff, J. R. Proc. Natl. Acad.
Sci. USA 1994, 91, 4096.
2. Davies, I. W.; Reider, P. J. Chem. Ind. 1996, 412.
3. Davies, I. W.; Gerena, L.; Cai, D.-W.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1997, 38,
1145.
4. Lee, N. H.; Muci, A. R.; Jacobsen, E. N. Tetrahedron Lett. 1991, 32, 6533.
5. Julian, D. R.; Matusiak, Z. S. J. Heterocycl. Chem. 1975, 12, 1179.
6. Ghosh, A. K.; McKee, S. P.; Sanders, W. M. Tetrahedron Lett. 1991, 32, 711.
7. Trost, B. M. Science 1991, 254, 1471. Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259.
8. Rosen, W. E.; Green, M. J. J. Org.Chem. 1963, 28, 2797. Rimek, H.-J.; Yurraphat, T.; Zymalkowski, F. Liebigs
Ann. Chem. 1969, 725, 116. Huebener, C. F.; Donoghue, E. M.; Novak, C. J.; Dorfman, L.; Wenkert, E. J. Org.
Chem. 1970, 35, 1149.
9. Kajiro, H.; Mitaamura, S.; Mori, A.; Hiyama, T. Synlett 1998, 51. Kajiro, H.; Mitaamura, S.; Mori, A.; Hiyama,
T. Bull. Chem. Soc. Jpn. 1999, 72, 1093.
1
10. Mp 122–123°C. Anal. C, 59.94; H, 5.17; N, 7.60. C9H9NO3 requires C, 60.33; H, 5.06; N, 7.82; H NMR (400
MHz DMSO-d6) Major isomer: l 9.70–9.93 (br, 1H), 8.35 (dd, 1H, J=7.8, 1.6), 7.86 (dt, 1H, J=7.8,1.7), 7.54
(dt, 1H, J=11.7, 1.1), 7.49 (dd, 1H, J=8.2, 1.1), 5.68 (t, 1H, J=2.2), 4.91 (dd, 1H, J=12.4, 2.3), 4.59 (dd, 1H,
J=12.4, 2.1), 4.13–4.38 (br, 1H). Selected minor isomer peaks: l 9.13 (dd, 1H, J=8.1, 1.7), 7.91 (dt, 1H, J=7.9,
1.7), 4.94 (dd, 1H, J=9.8, 2.6), 4.76 (dd, 1H, J=12.8, 2.8). Moriarty, R. M.; Hu, H.; Gupta, S. C. Tetrahedron
Lett. 1981, 232, 1283. Moriarty, R. M.; Prakash, O.; Thachet, C. T. Synth. Commun. 1984, 14, 1373.
11. Rh/C gave 1.5:1 cis selectivity and no reaction in the presence of 1.0 equiv. HBr (18 h, 40 psig).
12. Bromide is believed to inhibit the non-selective hydrogenation sites in the Raney–Ni tartaric acid asymmetric
reduction of methylacetoacetate. Harada, T.; Yamamoto, M.; Onaka, S.; Imaida, M.; Ozaki, H.; Tai, A.; Izumi,
Y. Bull. Chem. Soc. Jpn. 1981, 54, 2323.
,
13. YMC ODS AQ (4.6×250 mm, S-5 micron 120 A). Eluent CH3CN, 5 mM K2HPO4 at pH 8, 35°C.
14. Other polar solvents, e.g. DMF, DMPU gave 2:1 selectivity.
1
15. Mp 92–95°C; LC/MS m/z 181; H NMR (400 MHz, DMSO-d6) l 7.25 (1H, dd, J=8, 1), 7.10 (1H, dt, J=8, 1),
6.83 (1H, dt, J=8, 1), 6.69 (1H, dd, J=8, 1), 5.15 (1H, br.s), 4.95 (1H, br.s), 4.55 (1H, d, 3.5), 3.96–3.99 (2H,
m), 3.80–3.92 (2H, m).
16. Hydroxychromanone starting material had 94% ee by SFC assay—Chiralpak AD, 300 Bar; 4–40% MeOH at
2%/min; 1.5 mL/min; 35°C; 215 nm.