Journal of the American Chemical Society
Article
(e) Clemente, F. R.; Houk, K. N. Angew. Chem., Int. Ed. 2004, 43,
5765.
(4) (a) Palomo, C.; Mielgo, A. Angew. Chem., Int. Ed. 2006, 45, 7876.
(b) Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, L.; Jorgensen,
K.-A. Acc. Chem. Res. 2012, 45, 248.
(5) Seeman, J. I. Chem. Rev. 1983, 83, 83.
(6) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int.
Ed. 2005, 44, 4212.
(7) Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.;
Kjaersgaard, A.; Jorgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296.
(8) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.
(9) (a) Blarer, S. J.; Seebach, D. Chem. Ber. 1983, 116, 3086.
(b) Seebach, D.; Beck, A. K.; Golinski, J.; Hay, J. N.; Laube, T. Helv.
Chim. Acta 1985, 68, 162. (c) Seebach, D.; Golinski, J. Helv. Chim.
Acta 1981, 64, 1413.
(10) Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew. Chem., Int. Ed.
2006, 45, 6366.
(11) See Supporting Information for details
(12) Bures, J.; Armstrong, A.; Blackmond, D. G. J. Am. Chem. Soc.
Further kinetic and spectroscopic investigations of these and
other reaction systems may allow these questions to be answered.
In cases where such intermediates may play a role in the
stereochemical outcome, the potential exists for exploitation
of these features via rational catalyst and reaction design that
may ultimately lead to even more efficient and selective
asymmetric organocatalytic processes than might be envisioned
by consideration of the precepts of model II alone.
CONCLUSIONS
■
In summary, NMR spectroscopic identification of intermedi-
ate species coupled with kinetic studies help to rationalize
the stereochemical outcome in two separate organocatalytic
reactions, the conjugate addition of linear aldehydes to nitro-
olefins and the α-chlorination of aldehydes, in a manner that
could not be explained by a simple steric model of enamine
attack on an electrophile as in model II. These findings address
general reactivity and selectivity concepts with the proposal of a
novel reaction paradigm that combines a classic Curtin−Hammett
scenario with the concept of reversibility in or subsequent to the
stereogenic center-forming step. Selectivity in these examples is
rationalized not by comparison of transition states for formation
of the stereogenic center but by the relative stability and reac-
tivity of equilibrated downstream intermediates in the separate
branches of a competitive reaction network. Such networks offer
the opportunity to tune selectivity at a number of different points
in the catalytic cycle and introduce additional possibilities for
rational design of active and selective substrate/catalyst combi-
nations. Experimental results are offered to suggest that this
concept may apply to related reactions and thus may represent a
general phenomenon for amine catalysts lacking an acidic
directing proton.
2011, 133, 8822.
(13) Patora-Komisarska, K.; Benohoud, M.; Ishikawa, H.; Seebach,
D.; Hayashi, Y. Helv. Chim. Acta 2011, 94, 719.
(14) The reversible addition of enamine 8a to nitrostyrene 2a to
form cyclobutane 5a shown in Scheme 5 is likely to proceed via several
sequential, but kinetically indistinguishable, elementary steps that have
been combined as equilibrium constant Keq,5a. Similar arguments apply
to other steps in the cycle, including the deprotonation of cyclobutane
5a with equilibrium constant Keq,6a
.
(15) For H/D isotope effects in carbon acid deprotonations, see:
Watt, C. I. F. J. Phys. Org. Chem. 2010, 23, 561. See Supporting
Information for a summary of the mathematical analysis pertaining to
the results presented here.
(16) Bures, J.; Armstrong, A.; Blackmond, D. G. Chem. Sci. 2012, 3,
1273.
(17) The reverse of the catalytic cycle does not proceed further from
E-7, whose formation in the forward cycle is irreversible under catalytic
conditions.
(18) Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.;
Singhal, M.; Xu, L.; Mendes, P.; Kummer, U. Bioinformatics 2006, 22,
3067.
(19) For example, a highly selective outcome is predicted for
Pathway B in the case where the ratio Keq,5a/Keq,5a′ is large, and each of
the other ratios in the equation describing the er for Pathway B is unity
(unselective).
(20) The IUPAC definition of the Curtin−Hammett principle: Gold,
V.; Loening, K. L.; McNaught, A. D.; Shemi, P. IUPAC Compendium of
Chemical Terminology, 2nd ed.; Blackwell Science: Oxford, 1997.
Because the principle states that product selectivity depends only on
ΔΔG⧧, it is commonly, although incorrectly, stated as a corollary that
product selectivity is independent of the relative stability of
intermediates. See Supporting Information for a correction of this
misconception.
(21) Landis, C. R.; Halpern, J. A. J. Am. Chem. Soc. 1987, 109, 1746.
(22) Halpern, J. Science 1982, 217, 401.
(23) Ferretti, A. C.; Mathew, J. S.; Ashworth, I.; Purdy, M.; Brennan,
C.; Blackmond, D. G. Adv. Synth. Catal. 2008, 350, 1007.
(24) Zhang, W.; Lee, N. H.; Jacobsen, E. N. J. Am. Chem. Soc. 1994,
116, 425.
(25) Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T. Organo-
metallics 1993, 12, 4188.
(26) There are a number of diastereomeric possibilities for
cyclobutane 5a′, which is not observed experimentally. We suggest
that the most likely lowest energy alternative exhibits all configurations
in the cyclobutane ring reversed from that of 5a.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, kinetic studies, and structural NMR
studies. This material is available free of charge via the Internet
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
A.A. and D.G.B. acknowledge funding from the EPSRC. J.B.
acknowledges a postdoctoral fellowship from the Education
Ministry of Spain (EX2009-0687) and FECYT. We acknowl-
edge D.-H. Huang and L. Pasternack (TSRI NMR Facility) for
valuable assistance with NMR spectroscopy.
REFERENCES
■
(1) List, B.; Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc. 2000,
122, 2395.
(2) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2000, 122, 4243.
(3) (a) Bahmanyar, S.; Houk, K. N. J. Am. Chem. Soc. 2001, 123,
11273. (b) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am.
Chem. Soc. 2003, 125, 2475. (c) Hoang, L.; Bahmanyar, S.; Houk,
K. N.; List, B. J. Am. Chem. Soc. 2003, 125, 16. (d) List, B.; Hoang, L.;
Martin, H. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5839.
(27) Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2004, 126, 4108.
(28) (a) Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.;
Jorgensen, K. A. J. Am. Chem. Soc. 2004, 126, 4790. (b) Halland, N.;
6749
dx.doi.org/10.1021/ja300415t | J. Am. Chem. Soc. 2012, 134, 6741−6750