12 P. A. Chase, A. L. Gille, T. M. Gilbert and D. W. Stephan, Dalton Trans.,
2009, 7179.
thoroughly to insure dissolution of all of the solids. The tube
was quickly loaded into the NMR spectrometer and an appro-
priate series of 11B{1H}NMR spectra acquired until complete
conversion was achieved.
13 C. A. Tanur and D. W. Stephan, Organometallics, 2011, 30, 3652.
14 V. Sumerin, F. Schulz, M. Atsumi, C. Wang, M. Nieger, M. Leskela,
T. Repo, P. Pyykkö and B. Rieger, J. Am. Chem. Soc., 2008, 130, 14117.
15 P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Fröhlich and G. Erker,
Angew. Chem., Int. Ed., 2008, 47, 7543.
16 A. M. Chapman, M. F. Haddow and D. F. Wass, J. Am. Chem. Soc.,
2011, 133, 8826.
Conclusions
17 A. M. Chapman, M. F. Haddow and D. F. Wass, J. Am. Chem. Soc.,
2011, 133, 18463.
We have synthesised titanium-phosphorus frustrated Lewis pairs
based on titanocene–phosphinoaryloxide complexes. The facile
reduction of the cation titanium(IV) complex [Cp2TiOC6H4P-
(tBu)2][B(C6F5)4] with hydrogen led us to synthesise the tita-
nium(III)-phosphorus FLP [Cp2TiOC6H4P(tBu)2]. Both of these
complexes catalyse the dehydrogenation of Me2HN·BH3, albeit
with lower activity than their zirconium(IV) or hafnium(IV)
counterparts. The facile reduction of these titanium(IV) species
by hydrogen suggests possibilities in replacing more expensive
stoichiometric reducing agents in catalytic cycles where such
one electron processes depend on this oxidation state manifold.42
We also believe the isolation of reduced d1 metal-containing
frustrated Lewis pairs may open yet new possibilities for small
molecule activation in cases where metal backbonding is impor-
tant for substrate binding and activation.
18 A. J. M. Miller and J. E. Bercaw, Chem. Commun., 2010, 46, 1709.
19 G. R. Whittell, E. I. Balmond, A. P. M. Robertson, S. K. Patra,
M. F. Haddow and I. Manners, Eur. J. Inorg. Chem., 2010, 3967.
20 In this context, it is worth noting that related complexes of the zircono-
alkenylphosphine family have been reported for ethene polymnerisation
catalysis: P. Hao, S. Zhang, J. Yi and W.-H. Sun, J. Mol. Catal. A:
Chem., 2009, 302, 1.
21 A. M. Chapman, M. F. Haddow and D. F. Wass, Eur. J. Inorg. Chem.,
2012, 1546.
22 K. Matsubara, S. Niibayashi and H. Nagashima, Organometallics, 2003,
22, 1376.
23 B. Cetinkaya, P. B. Hitchcock, M. F. Lappert, S. Torroni, J. L. Atwood,
W. E. Hunter and M. J. Zaworotko, J. Organomet. Chem., 1980, 188, 31.
24 Similar radical elimination processes are known to occur when [Cp2MR2]
complexes (M = Zr and Ti) are oxidised: R. F. Jordan, R. E. LaPointe,
C. S. Bajgur, S. F. Echols and R. Willett, J. Am. Chem. Soc., 1987, 109,
4111.
25 Recent Advances in Hydride Chemistry, ed. M. Peruzzini, R. Poli,
M. Peruzzini and R. Poli, Elsevier Science, 2002.
26 R. S. P. Coutts, P. C. Wailes and R. L. Martin, J. Organomet. Chem.,
1973, 47, 375.
Acknowledgements
27 T. Janssen, R. Severin, M. Diekmann, M. Friedemann, D. Haase,
W. Saak, S. Doye and R. Beckhaus, Organometallics, 2010, 29, 1806.
28 Compare to 2.624(3) Å in a related titanium cyclopentadienyl phosphino-
aryloxide compound: C. A. Willoughby, R. R. Duff, Jr., W. M. Davis and
S. L. Buchwald, Organometallics, 1996, 15, 472.
29 J. W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 1729.
30 R. Gyepes, V. Varga, M. Horacek, J. Kubistas, J. Pinkass and K. Mach,
Organometallics, 2009, 28, 1748.
The University of Bristol is thanked for funding.
References
1 G. C. Welch, R. R. San Juan, J. D. Masuda and D. W. Stephan, Science,
2006, 314, 1124.
2 D. W. Stephan and M. Ullrich, J. Am. Chem. Soc., 2009, 131, 52.
3 V. Sumerin, F. Schulz, M. Atsumi, C. Wang, M. Nieger, M. Leskel,
T. Repo, P. Pyykkö and B. Rieger, J. Am. Chem. Soc., 2008, 130, 14117.
4 J. M. Farrell, Z. M. Heiden and D. W. Stephan, Organometallics, 2011,
30, 4497.
5 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010, 49, 46;
A. J. P. Cardenas, B. J. Culotta, T. H. Warren, S. Grimme, A. Stute,
R. Fröhlich, G. Kehr and G. Erker, Angew. Chem., Int. Ed., 2011, DOI:
10.1002/anie.201101622; Z. M. Heiden and D. W. Stephan, Chem.
Commun., 2011, 47, 5729; X. Zhao and D. W. Stephan, J. Am. Chem.
Soc., 2011, 133, 12448.
31 R. Gyepes, V. Varga, M. Horacek, J. Kubistas, J. Pinkass and K. Mach,
Organometallics, 2010, 29, 3780.
32 E. Samuel, J. F. Harrod, D. Gourier, Y. Dromzee, F. Robert and
Y. Jeannin, Inorg. Chem., 1992, 31, 3252.
33 M. E. Sloan, A. Staubitz, T. J. Clark, C. A. Russell, G. C. Lloyd-Jones
and I. Manners, J. Am. Chem. Soc., 2010, 132, 3831.
34 D. Pun, E. Lobkovsky and P. J. Chirik, Chem. Commun., 2007, 3297.
35 Y. Luo and K. Ohno, Organometallics, 2007, 26, 3597.
36 Although not definitive, the Gutmann Lewis Acceptor Numbers (AN) of
2 (86.3) was found to be very similar to its Zr (78.9) and Hf (93.7)
homologues.
6 A. J. M. Miller, J. A. Labinger and J. E. Bercaw, J. Am. Chem. Soc.,
2010, 132, 3301.
7 G. Ménard and D. W. Stephan, J. Am. Chem. Soc., 2010, 132, 1796.
8 Y. Zhang, G. M. Miyake and E. Y. X. Chen, Angew. Chem., Int. Ed.,
2010, 49, 10158.
9 C. Appelt, H. Westenberg, F. Bertini, A. W. Ehlers, J. C. Slootweg,
K. Lammertsma and W. Uhl, Angew. Chem., Int. Ed., 2011, 50, 3925.
10 B. Inés, S. Holle, R. Goddard and M. Alcarazo, Angew. Chem., Int. Ed.,
2010, 49, 8389.
37 The observed line broadening in the free Me2NHBH3 resonance could be
a facet of fast exchange of free and coordinated Me2NHBH3 to the Ti
centre on the NMR timescale, especially if the Ti centre is paramagnetic.
38 M. Bornand, S. Torker and P. Chen, Organometallics, 2007, 26, 3585.
39 C. Wang, G. Erker, G. Kehr, K. Wedeking and R. Frohlich, Organometal-
lics, 2005, 24, 4760.
40 A. B. Pangborn and M. A. Giardello, Organometallics, 1996, 15, 1518.
41 R. S. P. Coutts, P. C. Wailes and R. L. Martin, J. Organomet. Chem.,
1973, 47, 375.
11 S. J. Geier and D. W. Stephan, J. Am. Chem. Soc., 2009, 131, 3476.
42 J. Streuff, Chem.–Eur. J., 2011, 17, 5507.
9072 | Dalton Trans., 2012, 41, 9067–9072
This journal is © The Royal Society of Chemistry 2012