LETTER
Stud. Nat. Prod. Chem. 1996, 18, 43. (c) Blakemore, P. R.;
Asymmetric Synthesis of (–)-epi-Metazocine
1351
(13) Crimmins, M. T.; Caussanel, F. J. Am. Chem. Soc. 2006,
128, 3128.
White, J. D. Chem. Commun. 2002, 1159.
(2) (a) Clarke, E. G. C. Nature 1959, 184, 451. (b) Ager, J. H.;
Fullerton, S. E.; May, E. L. J. Med. Chem. 1963, 6, 322.
(c) Archer, S.; Albertson, N. F.; Harris, L. S.; Pierson, A. K.;
Bird, J. G. J. Med. Chem. 1964, 7, 123. (d) Tullar, B. F.;
Harris, L. S.; Perry, R. L.; Pierson, A. K.; Soria, A. E.;
Wetterau, W. F.; Albertson, N. F. J. Med. Chem. 1967, 10,
383. (e) Kametani, T.; Kigasawa, K.; Hiiragi, M.;
(14) Cossy, J.; Willis, C.; Bellosta, V.; BouzBouz, S. J. Org.
Chem. 2002, 67, 1982.
(15) Compound 16: To a solution of alcohol 15 (0.68 g, 2.3
mmol) in THF (30 mL) was added Ph3P (0.65 g, 2.5 mmol),
DIAD (0.51 g, 2.5 mmol), and diphenylphosphoryl azide
(0.96 g, 2.7 mmol) at 0 °C and stirring was continued for 12
h. The solvent was removed in vacuo and the residue was
purified by chromatography (petroleum ether–
Wagatsuma, N. Heterocycles 1974, 2, 79. (f) Rice, K. C.;
Jacobson, A. E. J. Med. Chem. 1976, 19, 430. (g) Palmer,
D. C.; Strauss, M. J. Chem. Rev. 1977, 77, 1.
EtOAc,100:1) to afford 16 (0.6 g, 80%) as a colorless liquid;
[α]D18 +74.0 (c 1.0, CHCl3); 1H NMR (CDCl3, 400 MHz): δ
= 7.21 (d, J = 8.4 Hz, 1 H), 7.12 (d, J = 2.8 Hz, 1 H), 6.84
(dd, J = 2.8, 8.4 Hz, 1 H), 4.91 (s, 1 H), 4.90 (s, 1 H), 3.80
(s, 3 H), 3.62–3.57 (m, 1 H), 3.12 (dd, J = 2.8, 14.0 Hz, 1 H),
2.58 (dd, J = 10.8, 14.4 Hz, 1 H), 2.52–2.45 (m, 1 H), 1.81
(s, 3 H), 1.22 (d, J = 6.8 Hz, 3 H); 13C NMR (CDCl3, 100
MHz): δ = 159.0, 146.3, 132.3, 129.5, 124.5, 118.0, 113.6,
112.7, 65.5, 55.5, 45.7, 37.6, 20.0, 16.1; IR: 3366, 2961,
2925, 2853, 2102, 1604, 1492, 1243, 1034 cm–1; HRMS
(ESI): m/z [M + H]+ calcd for C14H19BrN3O: 324.0706;
found: 324.0718.
(3) (a) Grewe, R.; Mondon, A. Chem. Ber. 1948, 81, 279.
(b) Genisson, Y.; Marazano, C.; Das, B. C. J. Org. Chem.
1993, 58, 2052. (c) Meyers, A. I.; Dickman, D. A.; Bailey,
T. R. J. Am. Chem. Soc. 1985, 107, 7974. (d) Comins, D. L.;
Zhang, Y.; Joseph, S. P. Org. Lett. 1999, 1, 657. (e) Anada,
M.; Tanaka, M.; Washio, T.; Yamawaki, M.; Abe, T.;
Hashimoto, S. Org. Lett. 2007, 9, 4559. (f) Yang, X.; Zhai,
H.; Li, Z. Org. Lett. 2008, 10, 2457.
(4) (a) Parker, K. A.; Fokas, D. J. Am. Chem. Soc. 1992, 114,
9688. (b) Parker, K. A.; Fokas, D. J. Org. Chem. 2006, 71,
449.
(16) Vaultier, M.; Knouzi, N.; Carrie, R. Tetrahedron Lett. 1983,
24, 763.
(17) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
(18) (a) Danieli, B.; Lesma, G.; Passarella, D.; Sacchetti, A.;
Silvani, A.; Virdis, A. Org. Lett. 2004, 6, 493.
(5) Trost, B. M.; Tang, W. J. Am. Chem. Soc. 2003, 125, 8744.
(6) (a) Trost, B. M.; Tang, W. J. Am. Chem. Soc. 2002, 124,
14542. (b) Trost, B. M.; Tang, W.; Toste, F. D. J. Am. Chem.
Soc. 2005, 127, 14785. (c) Omori, A. T.; Finn, K. J.; Leisch,
H.; Carroll, R. J.; Hudlicky, T. Synlett 2007, 2859.
(d) Leisch, H.; Omori, A. T.; Finn, K. J.; Gilmet, J.; Bissett,
T.; Ilceski, D.; Hudlicky, T. Tetrahedron 2009, 65, 9862.
(7) (a) Tanimoto, H.; Saito, R.; Chida, N. Tetrahedron Lett.
2008, 49, 358. (b) Chida, N. Top. Curr. Chem. 2011, 299, 1.
(8) Sun, Y.; Yu, B.; Wang, X.; Tang, S.; She, X.; Pan, X. J. Org.
Chem. 2010, 75, 4224.
(b) Shigeyama, T.; Katakawa, K.; Kogure, N.; Kitajima, M.;
Takayama, H. Org. Lett. 2007, 9, 4069. (c) Yoshida, K.;
Kawagoe, F.; Hayashi, K.; Horiuchi, S.; Imamoto, T.;
Yanagisawa, A. Org. Lett. 2009, 11, 515.
(19) Compound 17: To a stirred solution of 4 (200 mg, 0.57
mmol) in CH2Cl2 (60 mL) Hoveyda–Grubbs II (28 mg,
0.045 mmol, 8 mol%) was added under an argon
(9) Cheng, X.; Fu, C. Chin. J. Chem. 2007, 25, 1762.
(10) Smith, K.; El-Hiti, G. A.; Al-Shamali, M. Catal. Lett. 2006,
109, 77.
(11) (a) Crimmins, M. T.; Chaudhary, K. Org. Lett. 2000, 2, 775.
(b) Crimmins, M. T.; Slade, D. J. Org. Lett. 2006, 8, 2191.
(12) Compound 5: To a solution of thiazolidinethione
propionate 7 (4.27 g, 16.1 mmol) in CH2Cl2 (100 mL) at
0 °C, was added TiCl4 (1.86 mL, 16.9 mmol); a
atmosphere. The mixture was heated at reflux for 24 h, then
the solvent was removed in vacuum and the residue was
purified by chromatography (EtOAc) to afford 17 (46 mg,
25%) as a colorless solid; [α]D16 +172 (c 1.0, CHCl3); 1H
NMR (CDCl3, 400 MHz): δ = 7.11 (d, J = 2.4 Hz, 1 H), 7.03
(d, J = 8.8 Hz, 1 H), 6.81 (dd, J = 2.4, 8.8 Hz, 1 H), 5.71 (s,
1 H), 5.49 (s, 1 H), 3.78 (s, 3 H), 3.50–3.45 (m, 1 H), 2.96–
2.84 (m, 2 H), 2.18 (q, J = 6.8 Hz, 1 H), 1.96 (s, 3 H), 1.19
(d, J = 6.8 Hz, 3 H); 13C NMR (CDCl3, 100 MHz): δ = 165.2,
159.0, 156.0, 132.0, 128.8, 124.8, 118.8, 118.4, 113.7, 55.6,
55.5, 40.6, 37.6, 22.0, 17.7; IR: 3242, 2965, 2929, 2866,
1675, 1606, 1492, 1241, 1031 cm–1; HRMS (ESI): m/z [M +
H]+ calcd for C15H19BrNO2: 324.0594; found: 324.0596.
(20) (a) Ishibashi, H.; Kobayashi, T.; Nakashima, S.; Tamura, O.
J. Org. Chem. 2000, 65, 9022. (b) Tamura, O.;
characteristic orange slurry formed. After 10 min, (–)-
sparteine (3.78 g, 16.1 mmol) was added, and the color
changed to a deep red. After stirring for 30 min, the mixture
was cooled to –78 °C, N-methylpyrrolidinone (NMP; 1.6
mL, 16.1 mmol) was added and the mixture was stirred for
an additional 10 min. Aldehyde 6 (4.06 g, 17.7 mmol) in
CH2Cl2 (20 mL) was added and the mixture was stirred at –
78 °C for 1 h. After a further 2.5 hours stirring at 0 °C, the
reaction was quenched with sat. NH4Cl. After separation of
layers, the aqueous layer was further extracted with CH2Cl2
(2 × 30 mL) and the combined organic extract was dried
over anhydrous Na2SO4 and evaporated in vacuo. The
residue was purified by chromatography (petroleum ether–
Yanagimachi, T.; Kobayashi, T.; Ishibashi, H. Org. Lett.
2001, 3, 2427.
(21) Preparation of compound 18 (Scheme 4):
To a solution of 3 (43 mg, 0.12 mmol) in benzene (10 mL)
at reflux, was added dropwise a solution of Bu3SnH (51 mg,
0.18 mmol) and AIBN (30 mg, 0.18 mmol) in benzene (10
mL) over 1 h by using a syringe. The mixture was then
heated at reflux for 3 h. After evaporation of the solvent, the
residue was purified by chromatography on silica gel
(hexane–EtOAc, 2:1) to give 18 (27 mg, 87%); [α]D22 –77 (c
1.0, CHCl3); 1H NMR (CDCl3, 400 MHz): δ = 6.96 (d, J =
8.0 Hz, 1 H), 6.90 (d, J = 2.4 Hz, 1 H), 6.72 (dd, J = 2.4, 8.0
Hz, 1 H), 3.78 (s, 3 H), 3.53 (s, 1 H), 2.96 (s, 2 H), 2.93 (s,
3 H), 2.48 (d, J = 17.6 Hz, 1 H), 2.30 (d, J = 19.2 Hz, 1 H),
2.04 (q, J = 6.8 Hz, 1 H), 1.38 (s, 3 H), 1.19 (d, J = 7.2 Hz,
3 H); 13C NMR (CDCl3, 100 MHz): δ = 169.0, 158.6, 145.3,
130.6, 123.7, 112.4, 111.5, 61.0, 55.3, 43.4, 36.9, 36.9, 34.2,
18
EtOAc, 10:1) to afford 5 (6.0 g, 76%) as yellow liquid; [α]D
–79.3 (c 2.0, CHCl3); 1H NMR (CDCl3, 400 MHz): δ = 7.37–
7.33 (m, 2 H), 7.29–7.27 (m, 3 H), 7.19 (d, J = 8.4 Hz, 1 H),
7.11 (d, J = 2.8 Hz, 1 H), 6.82 (dd, J = 2.4, 8.4 Hz, 1 H),
5.37–5.31 (m, 1 H), 4.62–4.56 (m, 1 H), 4.24 (br s, 1 H),
3.77 (s, 3 H), 3.37 (dd, J = 6.8, 11.2 Hz, 1 H), 3.21 (dd, J =
3.6, 13.2 Hz, 1 H), 3.07–3.00 (m, 1 H), 2.90–2.86 (m, 3 H),
1.38 (d, J = 6.8 Hz, 3 H); 13C NMR (CDCl3, 100 MHz): δ =
201.0, 177.6, 158.8, 136.3, 131.9, 129.3, 129.2, 128.8,
127.1, 124.9, 118.0, 113.5, 71.9, 68.6, 55.4, 42.7, 39.6, 36.7,
31.9, 10.8; HRMS (ESI): m/z [M + H]+ calcd for
C22H25BrNO3S2: 494.0454; found: 494.0463.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 1349–1352