hydrolysis, carbonyl functionality may be revealed providing a
new method for carbonyl a-amination. Ongoing studies in our
laboratory are focused on extending this method to aldo-nitrones
and development of an asymmetric variant.
Notes and references
1 For reviews on electrophilic a-amination see: (a) G. Boche, in
Stereoselective Synthesis, ed. G. Helmchen, R. W. Hoffmann,
J. Mulzer and E. Schaumann, Thieme, Stuttgart, 1996, vol. 9,
pp. 5133–5157; (b) C. Greck and J. P. Genet, Synlett, 1997, 741;
(c) E. Ciganek, Org. React., 2009, 1–36; (d) J. P. Genet, C. Greck
and D. Lavergne, in Modern Amination Methods, ed. A. Ricci,
Wiley-VCH, Weinheim, Germany, 2000, ch. 3; (e) J. M. Janey,
Angew. Chem., 2005, 117, 4364 (Angew. Chem., Int. Ed., 2005,
44, 4292).
2 (a) D. A. Evans and D. S. Johnson, Org. Lett., 1999, 1, 595;
(b) K. Juhl and K. A. Jørgensen, J. Am. Chem. Soc., 2002,
124, 2420; (c) M. Marigo and K. A. Jørgensen, Chem. Commun.,
2006, 2001; (d) A. Bøgevig, K. Juhl, N. Kumaragurubaran,
W. Zhuang and K. A. Jørgensen, Angew. Chem., 2002, 114, 1868
(Angew. Chem., Int. Ed., 2002, 41, 1790); (e) Y. Hayashi,
S. Aratake, Y. Imai, K. Hibino, Q.-Y. Chen, J. Yamaguchi and
T. Uchimaru, Chem.–Asian J., 2008, 3, 225; (f) Y. Yamashita,
H. Ishitani and S. Kobayashi, Can. J. Chem., 2000, 78, 666;
(g) D. A. Evans and S. G. Nelson, J. Am. Chem. Soc., 1997,
119, 6452; (h) B. List, J. Am. Chem. Soc., 2002, 124, 5656;
(i) S. Mouri, Z. Chen, H. Mitsunuma, M. Furutachi,
S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2010,
132, 1255; (j) N. Kumaragurubaran, K. Juhl, W. Zhuang,
A. Bøgevig and K. A. Jørgensen, J. Am. Chem. Soc., 2002,
124, 6254; (k) T. Bui, G. Hernandez-Torres, C. Milite and
C. F. Barbas III, Org. Lett., 2010, 12, 5696; (l) T. Bui,
M. Borregan and C. F. Barbas III, J. Org. Chem., 2009,
74, 8935; (m) L. Cheng, L. Liu, D. Wang and Y.-J. Chen, Org.
Lett., 2009, 11, 3874; (n) Z.-Q. Qian, F. Zhou, T.-P. Du,
B.-L. Wang and J. Zhou, Chem. Commun., 2009, 6753.
3 A. Berger and K. D. Wehrstedt, J. Loss Prev. Process Ind., 2010,
23, 734.
Scheme 4 Secondary transformations.
benzylamine was synthesized and tested,11 but chirality transfer
was poor (18).
The acetone-derived nitrone provided the enediamide 19
rather than the isomeric a0-carbamoyl enamide. In this case
and other examples reported with diminished yields, competing
reactions producing unknown byproducts account for the mass
balance. The cyclohexenone-derived nitrone displayed unique
reactivity wherein the chloride byproduct was incorporated
yielding cis-b0-chloro-a0-carbamoyl enamide 20.
Both the enediamide and a0-carbamoyl enamide products
are resistant to hydrolysis and survive acidic or basic aqueous
workup; however, after extensive screening of conditions,
basic hydrolysis was realized upon treatment with freshly
prepared sodium benzylthiolate in MeOH. Subjecting the
enamide 3 to these conditions cleanly provided the Cbz-protected
a-amino ketone 21 in 85% yield (A, Scheme 4). Enediamide
product 7 was also hydrolyzed upon thiolate exposure and
subsequent acidic workup. In this case, partial tranesterification
occurred providing the methoxy-carbamyl protected a-amino
ketone as a minor product (B, Scheme 4). A one-pot procedure
taking nitrone starting material directly to the Cbz-protected
a-amino ketone 21 was also realized by treating the crude
reaction product from the [3,3]-a-amination with NaSBn/
MeOH. This sequence resulted in a yield of 69%, significantly
higher than the analogous two-step process (C, Scheme 4).
The enamide in both product classes provides opportunities
for further a-functionalization. Exposure of enamide 3 to Br2
provided hemiaminal oxazolidinone 23 from bromination-
debenzylation (D, Scheme 4).
4 (a) A. M. Berman and J. S. Johnson, J. Am. Chem. Soc., 2004,
126, 5680; (b) A. M. Berman and J. S. Johnson, J. Org. Chem.,
2006, 71, 219.
5 (a) E. A. Ilardi, C. E. Stivala and A. Zakarian, Chem. Soc. Rev.,
2009, 38, 3133; (b) U. Nubbemeyer, Synthesis, 2003, 961.
6 (a) H. O. House and F. A. Richey, J. Org. Chem., 1969, 34, 1430;
(b) C. H. Cummins and R. M. Coates, J. Org. Chem., 1983,
48, 2070; (c) C. S. Beshara, A. Hall, R. L. Jenkins, K. L. Jones,
T. C. Jones, N. M. Killeen, P. H. Taylor, S. P. Thomas and N. C. O.
Tomkinson, Org. Lett., 2005, 7, 5729; (d) A. Hall, E. P. Hugent,
K. L. Jones, T. C. Jones, N. M. Killeen, S. C. Yau and N. C. O.
Tomkinson, Synlett, 2007, 293; (e) L. V. Reis, A. M. Lobo,
S. Prahhakar and M. P. Duarte, Eur. J. Org. Chem., 2003, 190;
(f) R. Hofelmeier and S. Blechert, Angew. Chem., Int. Ed. Engl.,
1982, 21, 370; (g) P. S. Almeida, A. M. Lobo and S. Prabhakar,
Heterocycles, 1989, 28, 653; (h) A. Porzelle, M. D. Woodrow and
N. C. O. Tomkinson, Org. Lett., 2010, 12, 1492.
7 (a) D. A. Abramovitch, R. A. Abramovitch and H. Benecke,
Heterocycles, 1985, 23, 25; (b) I. Lantos and W.-Y. Zhang, Tetra-
hedron Lett., 1994, 35, 5977.
8 J. Y. Pfeiffer and A. M. Beauchemin, J. Org. Chem., 2009,
74, 8381.
9 See Supporting Information for nitrone scope and characterization
data.
10 (a) S. Osipov, O. Artyushin, A. Kolomiets, C. Bruneau and
P. Dixneuf, Synlett, 2000, 1031; (b) N. Karimova, D. Vorobyeva,
G. Shchetnikov and S. Osipov, Russ. Chem. Bull., 2010, 59, 107.
11 M. Breuning, T. Hauser and E.-M. Tanzer, Org. Lett., 2009,
11, 4032.
In conclusion, we have developed an a-amination of keto-
nitrones via multiheteroatom-[3,3]-rearrangement. This reaction
provides enediamide or a0-carbamoyl enamide products based
on the enolizable sites on the substrates employed. Upon basic
c
7570 Chem. Commun., 2012, 48, 7568–7570
This journal is The Royal Society of Chemistry 2012