4692
W. P. D. Goldring et al. / Bioorg. Med. Chem. Lett. 22 (2012) 4686–4692
14. Miramon, M.-L.; Mignet, N.; Herscovici, J. J. Org. Chem. 2004, 69, 6949.
15. Shim, G. Y.; Kim, S. H.; Han, S.-E.; Kim, Y. B.; Oh, Y.-K. Asian J. Pharm. Sci. 2009, 4,
207.
16. Huang, Q.-D.; Chen, H.; Zhou, L.-H.; Huang, J.; Wu, J.; Yu, X.-Q. Chem. Biol. Drug
Des. 2008, 71, 224.
17. Mukthavaram, R.; Marepally, S.; Venkata, M. Y.; Vegi, G. N.; Sistla, R.;
Chaudhuri, A. Biomaterials 2009, 30, 2369.
18. (a) Horiuchi, S.; Aoyama, Y. J. Control. Release 2006, 116, 107; (b) Sansone, F.;
observed between the cationic lipids. All lipoplex formulations
generally exhibited molar charge ratio dependent cytotoxicity.
The formulations which contained cholesterol generally exhibited
marginally to significantly higher cell viability and significantly
higher in vitro transfection into CHO-K1 cells than those formu-
lated with DOPE as co-lipid. In some cases the observed transfec-
ˇ
Dudic, M.; Donofrio, G.; Rivetti, C.; Baldini, L.; Casnati, A.; Cellai, S.; Ungaro, R. J.
tion efficiency was greater than the EPC/Chol control,
a
Am. Chem. Soc. 2006, 128, 14528; (c) Lalor, R.; DiGesso, J. L.; Mueller, A.;
Matthews, S. E. Chem. Commun. 2007, 4907; (d) Bagnacani, V.; Sansone, F.;
Donofrio, G.; Baldini, L.; Casnati, A.; Ungaro, R. Org. Lett. 2008, 10, 3953.
19. Srinivasachari, S.; Fichter, K. M.; Reineke, T. M. J. Am. Chem. Soc. 2008, 130,
4618.
formulation widely used for gene transfer. Within the cholesterol
formulation series, the highest transfection efficiency was achieved
at N:P 3:1 for lipoplexes composed of the acyclic lipids, 1 or 2, and
at N:P 10:1 for the macrocyclic lipids, 3 or 4. However, were the
macrocyclic lipids 3 or 4 to be employed for gene therapy at this
molar charge ratio (N:P 10:1) it would be at the expense of low cell
viability. In this context, the matched characteristics of high cell
viability (approximately >80%) and high transfection efficiency
was achieved at a N:P molar charge ratio of 3:1 for all lipoplexes
formulated with a cationic lipid (1-4), EPC and cholesterol.
The results of these studies are very encouraging and support
our hypothesis that macrocyclic lipids possess interesting proper-
ties as non-viral gene delivery vectors, including enhanced trans-
fection efficiency. Further work, including the optimization of the
lipid synthetic route, an investigation of different hydrophobic do-
mains and headgroups, as well as an investigation of the intracel-
lular trafficking of these lipoplexes are in progress and will be
disclosed in due course.
20. Liu, H.; Olsen, C. E.; Christensen, S. B. J. Nat. Prod. 2004, 67, 1439.
21. Selected data recorded for the amine lipids 1–4:
3-((5-(Dimethylamino)pentanoyl)oxy)propane-1,2-diyl bis(hept-6-enoate) (1):
mmax (film)/cmꢀ1 3072, 2963, 2919, 2855, 1739, 1606, 1462, 1415, 1261,
1072 and 802; dH (300 MHz, CDCl3) 5.85–5.72 (2H, m, H2C@CHCH2), 5.30–5.23
(1H, m, OCH), 5.04–4.93 (4H, m, H2C@CHCH2), 4.33–4.27 (2H, m, OCH2), 4.14
(1H, dd, J 11.9 and 6.0, OCHH), 4.13 (1H, dd, J 11.9 and 6.0, OCHH), 2.40–2.27
(8H, m, C(O)CH2 and CH2N(CH3)2), 2.30 (6H, s, CH2N(CH3)2), 2.10-2.03 (4H, m,
H2C@CHCH2), 1.68–1.58 (2H, m, CH2), 1.47–1.39 (2H, m, CH2), 1.32–1.20 (8H,
m, CH2); dC (100 MHz, CDCl3) 173.13, 173.09, 172.7, 138.3, 114.8, 68.9, 62.2,
62.1, 59.0, 45.3, 34.0, 33.8, 32.8, 30.1, 30.0, 29.3, 28.2, 27.0, 24.3, 24.2, 22.7; m/z
(ES) 440.3013 (M++H, 100%, C24H42O6N requires 440.3012).
3-((5-(Dimethylamino)pentanoyl)oxy)propane-1,2-diyl diheptanoate (2): mmax
(film)/cmꢀ1 2961, 2927, 2856, 1734, 1456, 1415, 1261, 1098 and 800; dH
(300 MHz, CDCl3) 5.30–5.23 (1H, m, OCH), 4.30 (1H, dd, J 11.9 and 4.3, OCHH),
4.29 (1H, dd, J 11.9 and 4.3, OCHH), 4.15 (1H, d, J 11.9, OCHH), 4.13 (1H, d, J
11.9, OCHH), 2.39-2.26 (8H, m, C(O)CH2 and CH2N(CH3)2), 2.27 (6H, s,
CH2N(CH3)2), 1.67–1.50 (8H, m, CH2), 1.34–1.21 (12H, m, CH2), 0.90–0.83
(6H, m, CH3); dC (100 MHz, CDCl3) 173.3, 173.0, 172.9, 68.8, 62.2, 62.1, 59.2,
45.3, 34.2, 34.0, 33.8, 32.8, 32.7, 30.0, 29.4, 28.75, 28.70, 27.1, 25.6, 22.7, 22.4,
14.1, 14.0; m/z (ES) 444.3336 (M++H, 100%, C24H46O6N requires 444.3325).
Acknowledgments
(E)-
and
(Z)-(5,16-Dioxo-1,4-dioxacyclohexadec-10-en-2-yl)methyl
5-
(dimethylamino)-pentanoate (3): Data for the major (E)-isomer; mmax (film)/
cmꢀ1 2961, 2928, 2857, 1732, 1635, 1461, 1262, 1099, 1016 and 808; dH
(300 MHz, CDCl3) 5.31-5.21 (3H, m, OCH and CH@CH), 4.31–4.11 (4H, m,
OCH2), 2.37–2.26 (8H, m, C(O)CH2 and CH2N(CH3)2), 2.25 (6H, s, CH2N(CH3)2),
2.10–2.02 (4H, m, C@CHCH2), 1.71–1.38 (8H, m, CH2), 1.36–1.21 (4H, m, CH2);
dC (100 MHz, CDCl3) 173.2, 172.9, 172.8, 131.0, 130.9, 68.9, 62.6, 62.1, 59.1,
45.2, 33.8, 32.0, 31.9, 30.3, 30.1, 29.4, 28.04, 27.99, 26.8, 24.8, 22.7; m/z (ES)
412.2701 (M++H, 100%, C22H38O6N requires 412.2699).
The authors thank the British Council (PMI2 Gulf States Cooper-
ation Grant No. RCGS206) and the Biomedical Research Program
intramural funding at WCMC-Q for support of this research.
Supplementary data
(5,16-Dioxo-1,4-dioxacyclohexadecan-2-yl)methyl 5-(dimethylamino)pentanoate
(4): mmax (film)/cmꢀ1 2927, 2856, 1741, 1457, 1260, 1129 and 735; dH
(300 MHz, CDCl3) 5.32–5.26 (1H, m, OCH), 4.39–4.26 (2H, m, OCH2), 4.21–
4.12 (2H, m, OCH2), 2.39–2.31 (8H, m, C(O)CH2 and CH2N(CH3)2), 2.29 (6H, s,
CH2N(CH3)2), 1.94–1.60 (8H, m, CH2), 1.35–1.29 (12H, m, CH2); dC (100 MHz,
CDCl3) 173.5, 173.05, 173.00, 69.1, 62.8, 62.1, 59.2, 45.4, 33.8, 33.72, 33.69,
31.9, 30.0, 29.4, 27.1, 27.0, 26.1, 26.02, 25.95, 25.90, 22.7; m/z (ES) 414.2853
(M++H, 100%, C22H40O6N requires 414.2856).
Supplementary data associated with this article can be found, in
References and notes
22. For a related application of molecular mechanics for the calculation of E/Z
ratios of RCM alkene isomer products, see: Goldring, W. P. D.; Hodder, A. S.;
Weiler, L. Tetrahedron Lett. 1998, 39, 4955.
23. Hirko, A.; Tang, F.; Hughes, J. A. Curr. Med. Chem. 2003, 10, 1185.
24. Zhang, Y.-P.; Reimer, D. L.; Zhang, G.; Lee, P. H.; Bally, M. B. Pharm. Res. 1997,
14, 190.
25. Gaucheron, J.; Wong, T.; Wong, K. F.; Maurer, N.; Cullis, P. R. Bioconjugate Chem.
2002, 13, 671.
26. Ferrari, M. E.; Rusalov, D.; Enas, J.; Wheeler, C. J. Nucleic Acids Res. 2002, 30,
1808.
1. Both, G.; Alexander, I.; Fletcher, S.; Nicolson, T. J.; Rasko, J. E. J.; Wilton, S. D.;
Symonds, G. Pathology 2011, 43, 642.
2. Chesnoy, S.; Huang, L. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 27.
3. Zhi, D.; Zhang, S.; Wang, B.; Zhao, Y.; Yang, B.; Yu, S. Bioconjugate Chem. 2010,
21, 563.
4. Liu, Y.; Liggitt, D.; Zhong, W.; Tu, G.; Gaensler, K.; Debs, R. J. Biol. Chem. 1995,
270, 24864.
5. Stewart, M. J.; Plautz, G. E.; Del Buono, L.; Yang, Z. Y.; Xu, L.; Gao, X.; Huang, L.;
Nabel, E. G.; Nabel, G. J. Hum. Gene Ther. 1992, 3, 267.
6. Zhu, N.; Liggitt, D.; Liu, Y.; Debs, R. Science 1993, 261, 209.
7. Thierry, A. R.; Lunardi-Iskandar, Y.; Bryant, J. L.; Rabinovich, P.; Gallo, R. C.;
Mahan, L. C. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 9742.
8. Popplewell, L. J.; Abu-Dayya, A.; Khanna, T.; Flinterman, M.; Abdul Khalique, N.;
Raju, L.; Øpstad, C. L.; Sliwka, H.-R.; Partali, V.; Leopold, P. L.; Sliwka, H.-R.;
Partali, V.; Dickson, G.; Pungente, M. D. Molecules 2012, 17, 1138.
9. Pungente, M. D.; Jubeli, E.; Øpstad, C. L.; Al-Kawaz, M.; Barakat, N.; Ibrahim, T.;
Abdul Khalique, N.; Raju, L.; Jones, R.; Leopold, P. L.; Sliwka, H.-R.; Partali, V.
Molecules 2012, 17, 3484.
10. Gliozzi, A.; Relini, A.; Chong, P. L.-G. J. Membr. Sci. 2002, 206, 131.
11. Patel, G. B.; Sprott, G. D. Crit. Rev. Biotechnol. 1999, 19, 317.
12. Dannenmuller, O.; Arakawa, K.; Eguchi, T.; Kakinuma, K.; Blanc, S.; Albrecht, A.-
M.; Schmutz, M.; Nakatani, Y.; Ourisson, G. Chem. Eur. J. 2000, 6, 645.
13. Réthoré, G.; Montier, T.; Le Gall, T.; Delépine, P.; Cammas-Marion, S.; Lemiègre,
L.; Lehn, P.; Benvegnu, T. Chem. Commun. 2007, 2054.
27. Zuhorn, I. S.; Oberle, V.; Visser, W. H.; Engberts, J. B. F. N.; Bakowsky, U.;
Polushkin, E.; Hoekstra, D. Biophys. J. 2002, 83, 2096.
28. Koynova, R.; Wang, L.; MacDonald, R. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
14373.
29. Felgner, P. L.; Ringold, G. M. Nature 1989, 337, 387.
30. Tang, F.; Hughes, J. A. J. Control. Release 1999, 62, 345.
31. Rosenzweig, H. S.; Rakhmanova, V. A.; McIntosh, T. J.; MacDonald, R. C.
Bioconjugate Chem. 2000, 11, 306.
32. Wang, L.; Koynova, R.; Parikh, H.; MacDonald, R. C. Biophys. J. 2006, 91, 3692.
33. Zhou, X.; Huang, L. Biochim. Biophys. Acta 1994, 1189, 195.
34. Friend, D. S.; Papahadjopoulos, D.; Debs, R. J. Biochim. Biophys. Acta 1996, 1278,
41.