M. Johnston et al. / Bioorg. Med. Chem. Lett. 22 (2012) 4585–4592
4591
reported from the literature are actually apparent IC50 as all inhibitors in this
investigation undergo covalent reactions with the hydrolytic enzymes.
36. Long, J. Z.; Li, W.; Booker, L.; Burston, J. J.; Kinsey, S. G.; Schlosburg, J. E.; Pavon,
F. J.; Serrano, A. M.; Selley, D. E.; Parsons, L. H.; Lichtman, A. H.; Cravatt, B. F.
Nat. Chem. Biol. 2009, 5, 37.
hDAGL
a activity by THL 3 using reporter compound 17 with 10%
DMSO conditions, and the characterizations including 1H NMR
spectra of 3–11, 17, and 18) associated with this article can be
37. Radio-TLC assay of DAGL inhibition: All cells, lysates (fresh or stored), and
membrane preparations were probe sonicated for 5 periods of 3 s with ice bath
cooling immediately prior to use. To the protein (100
containing DAGL in 90 L of buffer (50 mM Tris, pH 7.4, 10 mM CaCl2) in
screwtop eppendorfs (with O-rings) was added 5 L of pure DMSO (for the
control, 0% inhibition) or the inhibitors in 5 L of DMSO to be assayed at their
appropriate concentrations. As a positive control, 5 L of a stable solution of
lipoprotein lipase (0.23
g, Sigma, from Pseudomonas sp.,30 0.2% n-heptyl-b-
thioglucopyranoside, 10 mM CaCl2, 100 mM NaCl, 50 mM Tris, pH 7.4) was
always used. Each vial was hand mixed briefly then incubated for 15 min in a
sand bath at 37 °C. Then, [14C]SAG substrate (304,000 dpm, specific activity
lg) suspensions
References and notes
l
l
l
1. Bisogno, T.; Howell, F.; Williams, G.; Minassi, A.; Cascio, M. G.; Ligresti, A.;
Matias, I.; Schiano-Moriello, A.; Paul, P.; Williams, E.-J.; Gangadharan, U.;
Hobbs, C.; Di Marzo, V.; Doherty, P. J. Cell Biol. 2003, 163, 463.
2. Pedicord, D. L.; Flynn, M. J.; Fanslau, C.; Miranda, M.; Hunihan, L.; Robertson, B.
J.; Pearce, B. C.; Yu, X.-C.; Westphal, R. S.; Blat, Y. Biochem. Biophys. Res.
Commun. 2011, 411, 809.
3. Harkany, T.; Guzman, M.; Galve-Roperh, I.; Berghuis, P.; Devi, L. A.; Mackie, K.
Trends. Pharmacol. Sci. 2007, 28, 83.
4. Fride, E. J. Neuroendocrinology 2008, 20(Suppl. 1), 75.
5. Walker, D. J.; Suetterlin, P.; Reisenberg, M.; Williams, G.; Doherty, P. J. Neurosci.
Res. 2010, 88, 735.
6. Yoshida, T.; Fukaya, M.; Uchigashima, M.; Miura, E.; Kamiya, H.; Kano, M.;
Watanabe, M. J. Neurosci. 2006, 26, 4740.
7. Katona, I.; Urban, G. M.; Wallace, M.; Ledent, C.; Jung, K.-M.; Piomelli, D.;
Mackie, K.; Freund, T. F. J. Neurosci. 2006, 26, 5628.
8. Jung, K.-M.; Astarita, G.; Zhu, C.; Wallace, M.; Mackie, K.; Piomelli, D. Mol.
Pharmacol. 2007, 72, 612.
9. Uchigashima, M.; Narushima, M.; Fukaya, M.; Katona, I.; Kano, M.; Watanabe,
M. J. Neurosci. 2007, 27, 3663.
10. Ludanyi, A.; Eross, L.; Czirjak, S.; Vajda, J.; Halasz, P.; Watanabe, M.; Palkovits,
M.; Magloczky, Z.; Freund, T. F.; Katona, I. J. Neurosci. 2008, 28, 2976.
11. Matyas, F.; Urban, G. M.; Watanabe, M.; Mackie, K.; Zimmer, A.; Freund, T. F.;
Katona, I. Neuropharmacology 2008, 54, 95.
12. Gao, Y.; Vasilyev, D. V.; Goncalves, M. B.; Howell, F. V.; Hobbs, C.; Reisenberg,
M.; Shen, R.; Zhang, M.-Y.; Strassle, B. W.; Lu, P.; Mark, L.; Piesla, M. J.; Deng, K.;
Kouranova, E. V.; Ring, R. H.; Whiteside, G. T.; Bates, B.; Walsh, F. S.; Williams,
G.; Pangalos, M. N.; Samad, T. A.; Doherty, P. J. Neurosci. 2010, 30, 2017.
13. Tanimura, A.; Yamazaki, M.; Hashimotodani, Y.; Uchigashima, M.; Kawata, S.;
Abe, M.; Kita, Y.; Hashimoto, K.; Shimizu, T.; Watanabe, M.; Sakimura, K.; Kano,
M. Neuron 2010, 65, 320.
14. Keough, K. M. W.; MacDonald, G.; Thompson, W. Biochim. Biophys. Acta 1972,
270, 337.
15. Eichberg, J.; Zhu, X. Adv. Exp. Med. Biol. 1992, 318, 413.
16. Nicolaou, A., Kokotos, G., Eds. Bioactive Lipids; The Oily Press: Bridgwater, UK,
2004.
17. Sugiura, T.; Dondo, S.; Sukagawa, A.; Nakane, S.; Shinoda, A.; Kiyoko, I.;
Yamashita, A.; Waku, K. Biochem. Biophys. Res. Comm. 1995, 215, 89.
18. Sugiura, T.; Kobayashi, Y.; Oka, S.; Waku, K. Prostaglandins Leukot. Essent. Fatty
Acids 2002, 66, 173.
l
l
D-
55 Ci/mol) in 5
sample of [14C]SAG in DMSO was always checked by scintillation counting to
evaluate substrate concentration. After brief hand mixing and 20 min
incubation at 37 °C, the reaction was terminated by adding 200 L of 2:1
CHCl3/MeOH and vortexing for 1 min. Centrifugation for 2 min at 10,000ꢁg
gave a 150 L bottom phase that was predominantly chloroform, a small
lL of DMSO was added by microcap to all vials. An extra 5 lL
a
l
l
protein interphase, and an upper phase that was predominantly water. The
upper phase and protein interface contained negligible (twice background)
radioactive material by scintillation counting. Using
approximately 100 L of each bottom phase was transferred to new eppendorf
vials. Then, 5 L samples of the bottom phases (approximately 10,000 dpm)
were spotted for TLC, and 5 L samples were also checked by scintillation
a 200 lL pipette tip,
l
l
l
counting. The silica gel 60 TLC plates were eluted with chloroform/methanol/
aqueous ammonium hydroxide. Though literature reports range from
85:15:0.11,26,28 to 85:15:1,31 an optimized ratio of 86:14:0.75 elutes
substrate [14C]SAG (Rf 0.88), [14C]2-AG (Rf 0.59), and [14C]arachidonic acid (Rf
0.11). In addition to the characteristic decompositions under the basic
conditions of radiolabeled arachidonic acid and diglyceride substrate [14C]2-
AG, there generally appeared to be more degradation of radiolabeled substrate
if it did not contain carrier lipids from cell extraction. The air dried TLC plates
were opposed to Perkin Elmer multisensitive screens for 12 h. Raw data as
gross digital light units (DLU) were obtained from the Perkin Elmer Cyclone
phosphorimaging system for quantitative analysis (OptiQuant software version
5.0).38,39 Percent inhibition was calculated following background subtraction.
The protein specific activities were obtained from the controls. The specific
activities of the hDAGLa were in the range of 0.003–0.01 nmol/mg-min for the
cell lysates (specific activity was 0.06 in the presence of 0.05% Triton X-100)
and up to 0.1 nmol/min-mg for membrane (10,000ꢁg fraction) preparations.
DAGL activities of protein from empty plasmid transfections were 0.003–
0.01 nmol/min-mg. Thus, the specific activities of hDAGL
times the activities of mock infections with empty plasmid. The radio-TLC
analyses of mDAGLb inhibition (data not shown) used 20 g of protein from
cell lysate with a specific activity above 0.1 nmol/min-mg. The radio-TLC
analyses of mDAGL inhibition (Table 2) used 8.8 of protein from
a were only 1.5–3
l
a
l
g
a
19. Piomelli, D. Nat. Rev. Neurosci. 2003, 4, 873.
membrane preparation with a specific activity above 0.3 nmol/min-mg. The
specific activity of the lipoprotein lipase positive control under the assay
conditions was >400 nmol/mg-min. Other standard compounds from prior
literature that were used, JZL184,36 PMSF,1 and RHC80267,1,25,40 have been
reported to be poor inhibitors of DAGL activity.
20. Bisogno, T.; Ligresti, A.; Di Marzo, V. Pharmacol. Biochem. Behav. 2005, 81, 224.
21. Sugiura, T.; Kishimoto, S.; Oka, S.; Gokoh, M. Prog. Lipid Res. 2006, 45, 405.
22. Hashimotodani, Y.; Ohno-Shosaku, T.; Watanabe, M.; Kano, M. J. Physiol. 2007,
584, 373.
23. Carrasco, S.; Merida, I. Trends Biochem. Sci. 2007, 32, 27.
24. Hashimotodani, Y.; Ohno-Shosaku, T.; Maejima, T.; Fukami, K.; Kano, M.
Neuropharmacology 2008, 54, 58.
25. Szabo, B.; Urbanski, M. J.; Bisogno, T.; Di Marzo, V.; Mendiguren, A.; Baer, W. U.;
Freiman, I. J. Physiol. 2006, 577, 263.
26. Bisogno, T.; Cascio, M. G.; Saha, B.; Mahadevan, A.; Urbani, P.; Minassi, A.;
Appendino, G.; Saturnino, C.; Martin, B.; Razdan, R.; Di Marzo, V. Biochim.
Biophys. Acta 2006, 1761, 205.
27. Hoover, H. S.; Blankman, J. L.; Niessen, S.; Cravatt, B. F. Bioorg. Med. Chem. Lett.
2008, 18, 5838.
28. Bisogno, T.; Burston, J. J.; Rai, R.; Allara, M.; Saha, B.; Mahadevan, A.; Razdan, R.
K.; Wiley, J. L.; Di Marzo, V. ChemMedChem 2009, 4, 946.
29. Majerus, P. W.; Prescott, S. M. Methods Enzymol. 1982, 86, 11.
30. Quistad, G. B.; Sparks, S. E.; Casida, J. E. Toxicol. Appl. Pharmacol. 2001, 173, 48.
31. Ortar, G.; Bisogno, T.; Ligresti, A.; Morera, E.; Nalli, M.; Di Marzo, V. J. Med.
Chem. 2008, 51, 6970.
32. Wedler, C.; Kleiner, K.; Kunath, A.; Schick, H. Liebigs Ann. Chem. 1996, 881.
33. Ortar, G.; Cascio, M. G.; Moriello, A. S.; Camalli, M.; Morera, E.; Nalli, M.; Di
Marzo, V. Eur. J. Med. Chem. 2008, 43, 62.
38. Johnston, R. F.; Pickett, S. C.; Barker, D. L. Electrophoresis 1990, 11, 355.
39. Liberatore, G. T.; Wong, J. Y. F.; Krenus, D.; Jeffreys, B. J.; Porritt, M. J.; Howells,
D. W. Biotechniques 1999, 26, 432.
40. Moriyama, T.; Urade, R.; Kito, M. J. Biochem. 1999, 125, 1077.
41. Duclos, R. I., Jr.; Johnston, M.; Vadivel, S. K.; Makriyannis, A.; Glaser, S. T.;
Gatley, S. J. J. Org. Chem. 2011, 76, 2049.
42. Richardson, R. D.; Ma, G.; Oyola, Y.; Zancanella, M.; Knowles, L. M.; Cieplak, P.;
Romo, D.; Smith, J. W. J. Med. Chem. 2008, 51, 5285.
43. Zandonella, G.; Haalck, L.; Spener, F.; Faber, K.; Paltauf, F.; Hermetter, A. Eur. J.
Biochem. 1995, 231, 50.
44. Duque, M.; Graupner, M.; Stutz, H.; Wicher, I.; Zechner, R.; Paltauf, F.;
Hermetter, A. J. Lipid Res. 1996, 37, 868.
45. Stradner, A.; Mayer, B.; Sottmann, T.; Hermetter, A.; Glatter, O. J. Phys. Chem. B
1999, 103, 6680.
46. Yang, Y.; Babiak, P.; Reymond, J.-L. Org. Biomol. Chem. 2006, 4, 1746.
47. Rosseto, R.; Tcacenco, C. M.; Ranganathan, R.; Hajdu, J. Tetrahedron Lett. 2008,
49, 3500.
48. Zhu, P.; Clamme, J.-P.; Deniz, A. A. Biophys. J.: Biophys. Lett. 2005, 89, L37.
49. In vitro FRET-based DAGL assays: Both configurations of the FRET pairing of
pyrene donor and dinitrophenyl acceptor 17 and 18 were satisfactory, though
the 2-pyrenyl analog 17 was used for all in vitro FRET assays. The fluorescent
assays were run in the same Tris buffer with calcium used for the
34. Duclos, R. I., Jr.; Gatley, S. J.; Bhatt, S. R.; Johnston, M. J. Label. Compd.
Radiopharm. 2009, 52, 324.
35. General: THL 3, JZL184, URB597, and other inhibitors used (see Supplementary
data for structures) were commercially available and used as freshly prepared
DMSO solutions. All arachidonates were maintained under argon or in argon-
degassed solvents. Glass-backed Silica Gel 60 TLC plates were used, and long
delays between spotting and elution were avoided. All solvent ratios are by
volume. All data are reported as the mean of triplicate experiments except
n = 1 or 2 for radio-TLC assays and FRET screenings with DAGLs, lipoprotein
lipase, and pancreatic lipase. Increased enzymatic activity (rather than
inhibition) is indicated by <0% inhibition, and is likely due to detergent or
radiochemical assays except that 200
efficient reading. The lipoprotein lipase standard (0.23
positive control. The freshly sonicated HEK cell lysate (100
l
L
final volumes were needed for
g) was again used for a
g total) protein
l
l
containing DAGL was used as a suspension for each assay. A 15 min period of
gentle shaking at ambient temperature was used following the addition of
10
The ether lipid substrate (25
(10 L) to all wells, and after 2 min of shaking at 37 °C, an initial reading was
taken with excitation at 320 nm and emission observed at 400 nm. Every
l
L of pure DMSO (for the control) or the 10
lL DMSO solutions of inhibitors.
lM final concentration) was then added in DMSO
l
other effects at higher compound (>10
lM) assay concentrations as has
previously been observed in DAGL assays.36 All IC50 data discussed and