ORGANIC
LETTERS
2012
Vol. 14, No. 15
4022–4025
Construction of Interglycosidic NÀO
Linkage via Direct Glycosylation of Sugar
Oximes
Jun Yu,† Jiansong Sun,*,‡ and Biao Yu*,‡
Department of Chemistry, University of Science and Technology of China, 96 Jinzhai
Road, Hefei, Anhui 230026, China, and State Key Laboratory of Bio-organic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry,
Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
jssun@mail.sioc.ac.cn; byu@mail.sioc.ac.cn
Received July 6, 2012
ABSTRACT
Direct glycosylation of sugar oximes and HONHFmoc has been realized for the first time by using glycosyl ortho-hexynylbenzoates as donors under the
catalysis of PPh3AuOTf, providing an effective approach to the synthesis of NÀO linked saccharides, which are of great biological interest.
The peculiar three-bond glycosidic ÀNÀOÀ linkage is a
prominent structural feature of calicheamicin-esperamicin
antibiotics,1,2 providing a conformational control element
that allows selective binding of the antibiotics to specific
DNA sequences.3,4 Heroic efforts toward the synthesis of
this type of saccharide and the intact antibiotics have led to
three alternatives for the construction of this important
glycosidic linkage (Scheme 1).5À7 The first approach em-
ploys condensation of glycosyloxyamine A with sugar
ketone B to provide oxime disaccharide C which is then
subjected to reduction to afford the target disaccharide F.5
The second one applies SN2 displacement of a sugar
trifluoromethanesulfonate E with the sodium salt of gly-
cosyl urethane D, and a removal of the N-COOEt group, to
furnish disaccharide F.6 The third alternative employs
glycosylation of sugar nitrone H with a glycosyl bromide
or trichloroacetimidate G and subsequent removal of the
resulting N,O-benzylidene group to provide disaccharide
F.7 However, an obvious approach to the construction of
the interglycosidic NÀO linkage would be via the direct
glycosylation of sugar oximes (i.e., 2a).
† University of Science and Technology of China.
‡ Chinese Academy of Sciences.
(1) (a) Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C. C.;
Morton, G. O.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3464. (b)
Lee, M. D.; Dunne, T. S.; Chang, C. C.; Ellestad, G. A.; Siegel, M. M.;
Morton, G. O.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc.
1987, 109, 3466.
(2) (a) Golik, J.; Clardy, J.; Dubay, G.; Groenewold, G.; Kawaguchi,
H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J.
Am. Chem. Soc. 1987, 109, 3461. (b) Golik, J.; Dubay, G.; Groenewold,
G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.;
Doyle, T. W. J. Am. Chem. Soc. 1987, 109, 3462.
(3) Walker, S.; Cange, D.; Gupta, V.; Kahne, D. J. Am. Chem. Soc.
1994, 116, 3197.
(4) For example, see: (a) Zein, N.; Sinha, A. M.; McGahren, W. J.;
Ellestad, G. A. Science 1988, 240, 1198. (b) Zein, N.; Poncin, M.;
Nilakantan, R.; Ellestad, G. A. Science 1989, 244, 697. (c) Zein, N.;
McGahren, W. J.; Morton, G. O.; Ashcroft, J.; Ellestad, G. A. J. Am.
Chem. Soc. 1989, 111, 6888. (d) Walker, S.; Landovitz, R.; Ding, W. D.;
Ellestad, G. A.; Kahne, D. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 4608.
(5) (a) Nicolaou, K. C.; Groneberg, R. D. J. Am. Chem. Soc. 1990,
112, 4085. (b) Groneberg, R. D.; Miyazaki, T.; Stylianides, N. A.;
Schulze, T. J.; Stahl, W.; Schreiner, E. P.; Suzuki, T.; Iwabuchi, Y.;
Smith, A. L.; Nicolaou, K. C. J. Am. Chem. Soc. 1993, 115, 7593. (c)
Nicolaou, K. C.; Hummel, C. W.; Nakada, M.; Shibayama, K.; Pitsinos,
E. N.; Saimoto, H.; Mizuno, Y.; Baldenius, K.-U.; Smith, A. L. J. Am.
Chem. Soc. 1993, 115, 7625.
(6) (a) Yang, D.; Kim, S.-H.; Kahne, D. J. Am. Chem. Soc. 1991, 113,
4715. (b) Halcomb, R. L.; Wittman, M. D.; Olson, S. H.; Danishefsky,
S. J.; Golik, J.; Wong, H.; Vyas, D. J. Am. Chem. Soc. 1991, 113, 5080.
(7) (a) Bamhaoud, T.; Lancelin, J.-M.; Beau, J.-M. J. Chem. Soc.,
Chem. Commun. 1992, 1494. (b) Da Silva, E.; Prandi, J.; Beau, J.-M. J.
Chem. Soc., Chem. Commun. 1994, 2127. (c) Moutel, S.; Prandi, J. J.
Chem. Soc., Perkin Trans. 1 2001, 305.
(8) Glycosylation of isatine 3-oximes with R-D-glucosaminyl chloride
peracetate under phase transfer conditions was reported; see: Kuryanov,
V. O.; Chupakhina, T. A.; Shapovalova, A. A.; Katsev, A. M.; Chirva,
V. Ya. Russ. J. Bioorg. Chem. 2011, 37, 231.
r
10.1021/ol301863j
Published on Web 07/25/2012
2012 American Chemical Society