We are grateful to the grants from the International S&T
Cooperation Program of Jiangsu Province (BZ2010048), the
Scientific Research Foundation for the Returned Overseas
Chinese Scholars, State Education Ministry, the Priority Academic
Program Development of Jiangsu Higher Education Institutions,
and the Key Laboratory of Organic Synthesis of Jiangsu Province.
Notes and references
1 (a) J.-C. Gong and P. L. Fuchs, J. Am. Chem. Soc., 1996, 118,
4486–4487; (b) A. Studer, Chem.–Eur. J., 2001, 7, 1159–1164;
(c) A. J. McCarroll and J. C. Walton, Angew. Chem., Int. Ed.,
2001, 40, 2224–2248; (d) H.-W. Shih, M. N. Vander Wal,
R. L. Grange and D. W. C. MacMillan, J. Am. Chem. Soc., 2010,
132, 13600–13603; (e) C. Liu, S. Tang, D. Liu, J. Yuan, L. Zheng,
L. Meng and A. Lei, Angew. Chem., Int. Ed., 2012, 51, 3638–3641.
2 (a) C.-L. Sun, H. Li, D.-G. Yu, M. Yu, X. Zhou, X.-Y. Lu, K. Huang,
S.-F. Zheng, B.-J. Li and Z.-J. Shi, Nat. Chem., 2010, 2, 1044–1049;
(b) E. Shirakawa, K. Itoh, T. Higashino and T. Hayashi, J. Am. Chem.
Soc., 2010, 132, 15537–15539; (c) W. Liu, H. Cao, H. Zhang, H. Zhang,
K. H. Chung, C. He, H.-B. Wang, F. Y. Kwong and A. Lei, J. Am.
Chem. Soc., 2010, 132, 16737–16740; (d) S. Yanagisawa, K. Ueda,
T. Taniguchi and K. Itami, Org. Lett., 2008, 10, 4673–4676; (e) A. Studer
and D. P. Curran, Angew. Chem., Int. Ed., 2011, 50, 5018–5022.
3 (a) C. Chatgilialoglu, D. Crich, M. Komatsu and I. Ryu, Chem.
Rev., 1999, 99, 1992–2069; (b) C. H. Schiesser, U. Wille,
H. Matsubara and I. Ryu, Acc. Chem. Res., 2007, 40, 303–313.
4 (a) G. A. DiLabio, E. M. Scanlan and J. C. Walton, Org. Lett.,
2005, 7, 155–158; (b) S. B. Herzon and A. G. Myers, J. Am. Chem.
Soc., 2005, 127, 5342–5344; (c) R. S. Grainger and E. J. Welsh,
Angew. Chem., Int. Ed., 2007, 46, 5377–5380.
Scheme 4 Investigation into the reaction mechanism.
5 (a) D. P. Curran and A. I. Keller, J. Am. Chem. Soc., 2006, 128,
13706–13707; (b) T. Taniguchi, Y. Sugiura, H. Zaimoku and
H. Ishibashi, Angew. Chem., Int. Ed., 2010, 49, 10154–10157;
(c) T. Taniguchi, H. Zaimoku and H. Ishibashi, Chem.–Eur. J., 2011,
17, 4307–4312; (d) A. Rosales, J. M. Bascon, C. L. Sanchez,
´ ´
M. A. Corral, M. M. Dorado, I. R. Garcıa and J. E. Oltra, J. Org.
´
Chem., 2012, 77, 4171–4176; (e) C. J. Cowden, Org. Lett., 2003, 5,
4497–4499; (f) C. Lopin, G. Gouhier, A. Gautier and S. R. Piettre,
J. Org. Chem., 2003, 68, 9916–9923; (g) M. Mella, M. Fagnoni and
A. Albini, Eur. J. Org. Chem., 1999, 2137–2142; (h) J. M. Lee, E. J. Park,
S. H. Cho and S. Chang, J. Am. Chem. Soc., 2008, 130, 7824–7825.
6 For the recent reviews on decarboxylative couplings, please see:
(a) N. Rodriguez and L. J. Goossen, Chem. Soc. Rev., 2011, 40,
5030–5048; (b) J. Cornella and I. Larrosa, Synthesis, 2012, 653–676;
(c) R. Shang and L. Liu, Sci. China: Chem., 2011, 54, 1670–1687.
7 (a) D. Tanaka, S. P. Romeril and A. G. Myers, J. Am. Chem. Soc.,
2005, 127, 10323–10337; (b) S. L. You and L. X. Dai, Angew. Chem.,
Int. Ed., 2006, 45, 5246–5248; (c) L. J. Goossen, G. Deng and
L. M. Levy, Science, 2006, 313, 662–664; (d) L. J. Goossen,
Scheme 5 Proposed mechanism for the decarboxylative coupling.
Scheme 6 Further synthetic functionalizations of 6.
N. Rodrıguez, B. Melzer, C. Linder, G. Deng and L. M. Levy,
´
double bond in cupric cinnamate B, which is generated by the
reaction of cinnamic acid with cupricoxide, would give a steady
intermediate C. C then proceeds via an elimination of carbon
dioxide and Cu(I) to generate the product. Then oxidation of Cu(I)
by a t-BuOꢀ radical in the presence of cinnamic acid would
regenerate the cupric cinnamate B to complete the catalytic cycle.11
We next set out to further functionalize the halogenated
product. We obtained a moderate yield of 6 on a 10 mmol scale.
Then we investigated the C–C and C–N bond formation of 6 with
other coupling partners (Scheme 6). The Suzuki coupling of 6
with phenylboronic acid afforded the corresponding product 7 with
good yield, using Pd–Cy JohnPhos system. Furthermore, we were
pleased to see that under unoptimized conditions, the amination of
6 with morpholine gave the desired product 8 in 88% yield.12
In summary, a novel copper-catalyzed decarboxylative
C(sp2)–C(sp3) coupling reaction of cinnamic acids with
benzylic molecules was developed using di-tert-butyl peroxide
as oxidant under neutral conditions.
J. Am. Chem. Soc., 2007, 129, 4824–4833; (e) Z. Wang, Q. Ding,
X. He and J. Wu, Org. Biomol. Chem., 2009, 7, 863–865; (f) J.-M. Becht
and C. L. Drian, Org. Lett., 2008, 10, 3161–3164; (g) R. Shintani,
S. Park, F. Shirozu, M. Murakami and T. Hayashi, J. Am. Chem. Soc.,
2008, 130, 16174–16175; (h) J. Cornella, P.-F. Lu and Igor Larrosa,
Org. Lett., 2009, 11, 5506–5509; (i) P.-F. Lu, C. Sanchez, J. Cornella
and I. Larrosa, Org. Lett., 2009, 11, 5710–5713; (j) R. Shang, Y. Fu,
J.-B. Li, S.-L. Zhang, Q.-X. Guo and L. Liu, J. Am. Chem. Soc., 2009,
131, 5738–5739; (k) S.-L. Zhang, Y. Fu, R. Shang, Q.-X. Guo and
L. Liu, J. Am. Chem. Soc., 2010, 132, 638–646; (l) L. J. Goossen, Paul
´
P. Lange, N. Rodrıguez and Christophe Linder, Chem.–Eur. J., 2010,
16, 3906–3909; (m) M. Yamashita, K. Hirano, T. Satoh and M. Miura,
Org. Lett., 2010, 12, 592–595.
8 N. Koshino, B. Saha and J. H. Espenson, J. Org. Chem., 2003, 68,
9364–9370.
9 (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335–344; (b) E. Shirakawa,
N. Vchiyama and T. Hayashi, J. Org. Chem., 2011, 76, 25–34.
10 Q.-Q. Xia, W.-Z. Chen and H.-Y. Qiu, J. Org. Chem., 2011, 76,
7577–7582.
11 We are grateful for the reviewers who gave us some good advice.
12 J. P. Wolfe and S. L. Buchwald, Angew. Chem., Int. Ed., 1999, 38,
2413–2416.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 7847–7849 7849