F
R. U. Batwal, N. P. Argade
Paper
Synthesis
dried (Na2SO4). Concentration of organic layer in vacuo, followed by
silica gel (60–120) column chromatographic purification of the re-
sulting residue using EtOAc–PE (3:2) as an eluent afforded the pure
product (+)-13 as a viscous oil; yield: 36 mg (81%); [α]D25 +3.7 (c 0.90
CHCl3).
Method B: To a stirred solution of (+)-14 (100 mg, 0.24 mmol) in an-
hyd MeOH (5 mL) were added a catalytic amount of p-TSA (5 mg) at 0
°C under argon atmosphere. The reaction mixture was stirred for 3 h.
The mixture was concentrated in vacuo and the obtained residue was
diluted with EtOAc (10 mL). The organic layer was washed with brine
(5 mL) and dried (Na2SO4). Concentration of organic layer in vacuo,
followed by silica gel (60–120) column chromatographic purification
of the resulting residue using EtOAc as an eluent afforded the pure
product (+)-15 as a white solid; yield: 46 mg (67%); mp 168–169 °C;
[α]D25 +1.2 (c 0.80 MeOH) {Lit.4a [α]D25 +2.3 (c 0.13 MeOH)}.
IR (CHCl3): 3390, 1700, 1629, 1606 cm–1
.
1H NMR (200 MHz, CDCl3): δ = 2.47 (br s, 1 H), 2.89 (br s, 1 H), 3.67
(dd, J = 12, 6 Hz, 1 H), 3.79 (dd, J = 12, 4 Hz, 1 H), 4.36 (dd, J = 6, 4 Hz, 1
H), 4.75 (s, 2 H), 5.32 (s, 1 H), 5.36 (s, 1 H), 6.01 (s, 2 H), 6.28 (d, J = 16
Hz, 1 H), 6.82 (d, J = 10 Hz, 1 H), 7.01 (d, J = 8 Hz, 1 H), 7.03 (s, 1 H),
7.62 (d, J = 16 Hz, 1 H).
IR (CHCl3): 3383, 1690, 1602 cm–1
.
1H NMR (400 MHz, DMSO-d6): δ = 3.35–3.50 (m, 2 H), 4.07 (q, J = 4 Hz,
1 H), 4.64 (t, J = 4 Hz, 1 H), 4.68 (s, 2 H), 5.01 (d, J = 8 Hz, 1 H), 5.11 (s,
1 H), 5.18 (s, 1 H), 6.30 (d, J = 16 Hz, 1 H), 6.77 (d, J = 8 Hz, 1 H), 7.02
(dd, J = 8, 4 Hz, 1 H), 7.07 (d, J = 4 Hz, 1 H), 7.50 (d, J = 16 Hz, 1 H), 9.15
(s, 1 H), 9.61 (s, 1 H).
13C NMR (100 MHz, CDCl3): δ = 64.3, 65.6, 73.2, 101.6, 106.5, 108.5,
115.2, 115.4, 124.7, 128.5, 143.3, 145.4, 148.3, 149.8, 167.0.
MS (ESI): m/z = 315 [M + Na]+.
HRMS (ESI): m/z [M + Na]+ calcd for C15H16O6Na: 315.0839; found:
315.0833.
13C NMR (100 MHz, DMSO-d6): δ = 63.6, 65.3, 72.8, 112.0, 113.8,
114.9, 115.8, 121.5, 125.5, 145.4, 145.5, 145.6, 148.5, 166.2.
MS (ESI): m/z = 303 [M + Na]+.
(+)-(S)-2-(2,2-Dimethyl-1,3-dioxolan-4-yl)allyl (E)-3-[3,4-Bis(me-
thoxymethoxy)phenyl]acrylate [(+)-14]
To a stirred solution of (E)-3-[3,4-bis(methoxymethoxy)phenyl]acryl-
ic acid (100 mg, 0.37 mmol) in CH2Cl2 (10 mL) were added alcohol (+)-
6 (52 mg, 0.33 mmol), EDCI (71 mg, 0.37 mmol), Et3N (75 mg, 0.74
mmol) and a catalytic amount of DMAP at 0 °C under argon atmo-
sphere. The reaction mixture was allowed to reach to 25 °C and fur-
ther refluxed for 6 h. The reaction was quenched with H2O (10 mL)
and the mixture was extracted with CH2Cl2 (2 × 10 mL). The combined
organic layers were washed with brine (10 mL) and dried (Na2SO4).
Concentration of organic layer in vacuo, followed by silica gel (60–
120) column chromatographic purification of the resulting residue
using EtOAc–PE (2:5) as an eluent afforded the pure product (+)-14 as
a viscous oil; yield: 176 mg (84%); [α]D25 +7.5 (c 0.52, MeOH).
Acknowledgment
R.U.B. thanks UGC, New Delhi, for the award of a research fellowship.
N.P.A. thanks Department of Science and Technology, New Delhi, for
the financial support. We also gratefully acknowledge the financial
support from CSIR-Network Project. We thank Mrs. S. S. Kunte from
NCL, Pune, for the HPLC data.
Supporting Information
1H NMR, 13C NMR and DEPT spectra of compounds 1–9 and 12–15 as
well as HPLC data for the enantiomeric purity of the compounds 1, 2,
IR (CHCl3): 3685, 3618, 1710, 1635, 1601 cm–1
.
1H NMR (200 MHz, CDCl3): δ = 1.41 (s, 3 H), 1.46 (s, 3 H), 3.52 (s, 3 H),
3.53 (s, 3 H), 3.77 (t, J = 8 Hz, 1 H), 4.19 (t, J = 8 Hz, 1 H), 4.65 (t, J = 8
Hz, 1 H), 4.75 (s, 2 H), 5.26 (s, 2 H), 5.27 (s, 2 H), 5.29 (s, 1 H), 5.39 (s, 1
H), 6.34 (d, J = 16 Hz, 1 H), 7.16 (s, 2 H), 7.37 (s, 1 H) 7.63 (d, J = 16 Hz,
1 H).
13C NMR (125 MHz, CDCl3): δ = 25.6, 26.3, 56.30, 56.32, 64.0, 69.1,
77.0, 95.1, 95.5, 109.5, 114.9, 115.7, 116.1, 116.2, 123.6, 128.8, 141.7,
144.9, 147.4, 149.3, 166.6.
and
9
are
available
free
of
charge
online
at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
References
(1) (a) Cai, X.; Ng, K.; Panesar, H.; Moon, S. J.; Paredes, M.; Ishida, K.;
Hertweck, C.; Minehan, T. G. Org. Lett. 2014, 16, 2962. (b) Hager,
D.; Paulitz, C.; Tiebes, J.; Mayer, P.; Trauner, D. J. Org. Chem.
2013, 78, 10784. (c) Nakagawa, Y.; Doi, T.; Masuda, Y.;
Takegoshi, K.; Igarashi, Y.; Ito, Y. J. Am. Chem. Soc. 2011, 133,
17485. (d) Taskova, R. M.; Kokubun, T.; Ryan, K. G.; Garnock-
Jones, P. J.; Jensen, S. R. J. Nat. Prod. 2011, 74, 1477. (e) Taylor, J.
G.; Li, X.; Oberthür, M.; Zhu, W.; Kahne, D. E. J. Am. Chem. Soc.
2006, 128, 15084.
MS (ESI): m/z = 431 [M + Na]+.
HRMS (ESI): m/z [M + Na]+ calcd for C21H28O8Na: 431.1676; found:
431.1667.
(+)-(S)-3,4-Dihydroxy-2-methylenebutyl (E)-3-(3,4-Dihydroxyphe-
nyl)acrylate [(+)-Artabotriolcaffeate, [(+)-15]
(2) Yu, J.; Li, T.; Sun, L.; Luo, X.; Ding, W.; Li, D. J. Chin. Pharm. Sci.
2002, 11, 4.
Method A: To a stirred solution of (+)-13 (50 mg, 0.17 mmol) in CH2Cl2
(5 mL) was added a solution of BBr3 (0.68 mL, 0.68 mmol, 1 M in
CH2Cl2) in dropwise fashion at –78 °C and the reaction mixture was
stirred under argon atmosphere for 30 min. The mixture was allowed
to reach to 25 °C and stirred for 2 h. The reaction was quenched with
ice cold H2O (5 mL) and the mixture was extracted with CH2Cl2 (2 × 7
mL) and the organic layer was washed with brine (10 mL) and dried
(Na2SO4). Concentration of organic layer in vacuo, followed by silica
gel (60–120) column chromatographic purification of the resulting
residue using EtOAc as an eluent afforded the pure product (+)-15 as a
white solid; yield: 2 mg (5%).
(3) Duong, T. N.; Edrada, R.; Ebel, R.; Wray, V.; Frank, W.; Duong, A.
T.; Lin, W. H.; Proksch, P. J. Nat. Prod. 2007, 70, 1640.
(4) (a) Ting, W.; Zhang, Q.-W.; Zhang, X.-Q.; Liu, G.; Wang, L.; Jiang,
M.-M.; Feng, Y.-F.; Ye, W.-C. Nat. Prod. Res. 2012, 26, 1408.
(b) Jiang, Z.-H.; Wang, J.-R.; Li, M.; Liu, Z.-Q.; Chau, K.-Y.; Zhao,
C.; Liu, L. J. Nat. Prod. 2005, 68, 397.
(5) Ilangovan, A.; Saravanakumar, S. Beilstein J. Org. Chem. 2014, 10,
127.
(6) (a) Batwal, R. U.; Argade, N. P. Org. Biomol. Chem. 2015, 13,
11331. (b) Han, J.-C.; Li, F.; Li, C.-C. J. Am. Chem. Soc. 2014, 136,
13610. (c) Jiang, S.-Z.; Lei, T.; Wei, K.; Yang, Y.-R. Org. Lett. 2014,
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, A–G