The NBO atomic charges suggest that the SiH(Cl)O moiety
in 3 is essentially neutral, the calculated partial charge is
ꢁ0.01 e. Thus, the extent of charge exchange and charge
acceptance at the SiH(Cl)O moiety in 3 does not correlate with
the associated energy contributions, where IPr - SiH(Cl)O
donation is stronger than SiH(Cl)O - B(C6F5)3 donation.
In conclusion we have synthesized and characterized a
remarkably stable silaformyl chloride IPrꢀSiH(Cl)QOꢀ
B(C6F5)3 (3), whose carbon homologue formyl chloride is
unstable at room temperature. Compound 3 is the first acyclic
silacarbonyl compound reported so far. Moreover, 3 represents the
first stable halo-silacarbonyl compound. Theoretical calculations
support the experimental results.
M. Driess, Chem.–Asian J., 2008, 3, 113–118; (c) J. D. Epping,
S. Yao, Y. Apeloig, M. Karni and M. Driess, J. Am. Chem. Soc.,
2010, 132, 5443–5455; (d) S. Yao, M. Brym, C. van Wullen and
¨
M. Driess, Angew. Chem., 2007, 119, 4237–4240 (Angew. Chem.,
Int. Ed., 2007, 46, 4159–4162).
13 A. Meltzer, S. Inoue, C. Prasang and M. Driess, J. Am. Chem.
Soc., 2010, 132, 3038–3046.
¨
14 (a) Y. Xiong, S. Yao and M. Driess, J. Am. Chem. Soc., 2009, 131,
7562–7563; (b) S. Yao, Y. Xiong and M. Driess, Chem.–Eur. J.,
2010, 16, 1281–1288; (c) Y. Xiong, S. Yao, R. Muller, M. Kaupp
¨
and M. Driess, J. Am. Chem. Soc., 2010, 132, 6912–6913.
15 Y. Xiong, S. Yao and M. Driess, Angew. Chem., 2010, 122,
6792–6795 (Angew. Chem., Int. Ed., 2010, 49, 6642–6645).
16 (a) Y. Apeloig, in The Chemistry of Organic Silicon Compounds,
ed. S. Patai and Z. Rappoport, Wiley, New York, 1989, vol. 1,
ch. 2, and references therein; (b) J. Kapp, M. Remko and
P. v. R. Schleyer, J. Am. Chem. Soc., 1996, 118, 5745–5751;
(c) M. Kimura and S. Nagase, Chem. Lett., 2001, 1098–1099.
17 L. W. Pineda, V. Jancik, H. W. Roesky and R. Herbst-Irmer,
Angew. Chem., 2004, 116, 5650–5652 (Angew. Chem., Int. Ed.,
2004, 43, 5534–5536).
We thank the Deutsche Forschungsgemeinschaft for financial
support. R. S. G. is grateful to Prof. Dietmar Stalke for his
generous support. Financial support from the AvH foundation
to R. A. is acknowledged.
18 (a) Y. Wang and G. H. Robinson, Inorg. Chem., 2011, 50,
12326–12337; (b) D. Martin, M. Melaimi, M. Soleilhavoup and
G. Bertrand, Organometallics, 2011, 30, 5304–5313; (c) A. Sidiropoulos,
C. Jones, A. Stasch, S. Klein and G. Frenking, Angew. Chem., 2009,
121, 9881–9884 (Angew. Chem., Int. Ed., 2009, 48, 9701–9704).
19 R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn and D. Stalke,
Angew. Chem., 2009, 121, 5793–5796 (Angew. Chem., Int. Ed.,
2009, 48, 5683–5686).
20 (a) R. S. Ghadwal, S. S. Sen, H. W. Roesky, M. Granitzka,
D. Kratzert, S. Merkel and D. Stalke, Angew. Chem., 2010, 122,
4044–4047 (Angew. Chem., Int. Ed., 2010, 49, 3952–3955); (b) R. S.
Ghadwal, H. W. Roesky, C. Schulzke and M. Granitzka, Organo-
metallics, 2010, 29, 6329–6333.
Notes and references
1 (a) G. Raabe and J. Michl, in The Chemistry of Organic Silicon
Compounds, ed. S. Patai and Z. Rappoport, Wiley, New York, 1989,
Part 2, pp. 1015–1142; (b) T. Muller, W. Ziche and N. Auner, in The
¨
Chemistry of Organic Silicon Compounds, ed. Z. Rappoport and
Y. Apeloig, Wiley, Chichester, 1988, vol 2, Part 2, pp. 859–1062;
(c) Advances in Organometallic Chemistry, ed. R. West and F. G. A.
Stone, Academic Press, San Diego, vol. 39, 1996.
2 (a) R. C. Fischer and P. P. Power, Chem. Rev., 2010, 110,
3877–3923; (b) P. P. Power, Nature, 2010, 463, 171–177.
3 (a) T. Iwamoto, K. Sato, S. Ishida, C. Kabuto and M. Kira, J. Am.
Chem. Soc., 2006, 128, 16914–16920; (b) N. Wiberg, K. S. Vasisht,
G. Fischer and P. Meyer, Z. Anorg. Allg. Chem., 2004, 630,
1823–1828; (c) A. Sekiguchi, R. Kinjyo and M. Ichinohe, Science,
2004, 305, 1755–1757.
¨
21 R. S. Ghadwal, H. W. Roesky, K. Propper, B. Dittrich, S. Klein
and G. Frenking, Angew. Chem., 2011, 123, 5486–5490 (Angew.
Chem., Int. Ed., 2011, 50, 5374–5378).
22 R. S. Ghadwal, R. Azhakar, H. W. Roesky, K. Propper,
¨
B. Dittrich, S. Klein and G. Frenking, J. Am. Chem. Soc., 2011,
133, 17552–17555.
23 (a) L. Gattermann and J. A. Koch, Chem. Ber., 1897, 30,
1622–1624; (b) G. A. Olah, L. Ohannesian and M. Arvanaghi,
Chem. Rev., 1987, 87, 671–686; (c) G. B. Villeneuve and
T. H. Chan, Tetrahedron Lett., 1997, 38, 6489–6492.
24 (a) A. Devos, J. Remion, A. M. Frisque-Hesbain, A. Colens and
L. Ghosez, Chem. Commun., 1979, 1180–1181; (b) H. A. Staab and
A. P. Datta, Angew. Chem., 1964, 75, 1203 (Angew. Chem., Int. Ed.
Engl., 1964, 3, 132).
4 R. West, M. J. Fink and J. Michl, Science, 1981, 214, 1343–1344.
5 A. G. Brook, F. Abdesaken, B. Gutekunst, G. Gutekunst and
R. K. Kallury, Chem. Commun., 1981, 191–192.
6 (a) V. Ya. Lee, A. Sekiguchi, J. Escudie and H. Ranaivonjatovo,
´
Chem. Lett., 2010, 312–318; (b) R. West, Polyhedron, 2002, 21,
467–472; (c) M. Weidenbruch, Organometallics, 2003, 22,
4348–4360; (d) N. Tokitoh and R. Okazaki, Adv. Organomet.
Chem., 2001, 47, 121–166; (e) M. Driess, Adv. Organomet. Chem.,
1996, 39, 193–229; (f) M. Weidenbruch, in The Chemistry of
Organic Silicon Compounds, ed. Z. Rappoport and Y. Apeloig,
John Wiley & Sons, Chichester, 2001, vol. 3, pp. 391–428.
25 (a) Apart from 3, an imidazolium-borate salt [IPrH]+[ClB(C6F5)3]ꢁ
(4) was also isolated, which separates out as an oil in non-polar
solvents and can be easily removed. Further details are given in the
ESI.z Attempts to isolate Lewis acid–base adduct of siliconmon-
oxide IPrꢀSiQOꢀB(C6F5)3, using 3 and IPr and also by the reaction
of 1 with H2OꢀB(C6F5)3 in the presence of two equivalents of IPr
were not successful. In both cases formation of 4 and free IPr was
observed. (b) The asymmetric unit of 3 contains two molecules. Only
one molecule of 3 was non-disordered. The second molecule of 3
(80% occupancy) was disordered and superposed to a molecule of
the imidazolium-borate salt 4 with 20% occupancy (see ESIz for
more details).
7 R. Okazaki and N. Tokitoh, Acc. Chem. Res., 2000, 33, 625–630.
8 P. Arya, J. Boyer, F. Carre, R. Corriu, G. Lanneau, J. Lapasset,
´
M. Perrot and C. Priou, Angew. Chem., 1989, 101, 1069–1071
(Angew. Chem., Int. Ed. Engl., 1989, 28, 1016–1018).
9 (a) E. Brendler, A. F. Hill and J. Wagler, Chem.–Eur. J., 2008, 14,
11300–11304; (b) C. W. So, H. W. Roesky, R. B. Oswald, A. Pal
and P. C. Jones, Dalton Trans., 2007, 5241–5244.
10 A. Mitra, J. P. Wojcik, D. Lecoanet, T. Muller and R. West,
¨
Angew. Chem., 2009, 121, 4130–4133 (Angew. Chem., Int. Ed.,
2009, 48, 4069–4072).
11 (a) N. Tokitoh and R. Okazaki, in The Chemistry of Organosilicon
Compounds, ed. Z. Rappoport and Y. Apeloig, Wiley, New York,
1998, vol. 2, pp. 1063–1103; (b) H. Suzuki, N. Tokitoh, S. Nagase
and R. Okazaki, J. Am. Chem. Soc., 1994, 116, 11578–11579.
12 (a) S. Yao, Y. Xiong, M. Brym and M. Driess, J. Am. Chem. Soc.,
2007, 129, 7268–7269; (b) S. Yao, Y. Xiong, M. Brym and
26 R. S. Ghadwal, H. W. Roesky, S. Merkel and D. Stalke, Chem.–
Eur. J., 2010, 16, 85–88.
27 M. Hargittai and B. Reffy, J. Phys. Chem. A, 2004, 108, 10194–10199
´
and references therein.
c
8188 Chem. Commun., 2012, 48, 8186–8188
This journal is The Royal Society of Chemistry 2012