knowledge, palladium-catalyzed cascade reactions con-
taining a C(sp3)ÀH activation step have not been investi-
gated, despite its potential usefulness; there is only one
specific example using insertion into the olefin bond of
norbornene.2r
(Scheme 1b). o-Methylphenyl isocyanide and an aryl
halide in the presence of a palladium catalyst would be
transformed into a 2-arylindole via a cascade consisting of
oxidative addition to the aryl halide, isocyanide insertion,
C(sp3)ÀH activation at the benzylic position, and reduc-
tive elimination. Upon comparison with other synthetic
methods for the indole skeleton,9 which is an impor-
tant nitrogen-containing heterocycle in pharmaceutical
sciences, our strategy has several advantages: (1) the
divergent synthesis of 2-arylindoles can be achieved by
changing the coupling partners; (2) the synthetic method
involving formation of a CÀC bond between the 2- and
3-positions of the indole is unique,10 particularly in palla-
dium-catalyzed syntheses;11 (3) the starting materials are
simple. To realize our idea, it was essential to overcome the
problem of isocyanide coordination to palladium, which
would hamper the palladium-catalyzed cascade process,
including C(sp3)ÀH activation. Here we report the use of a
combination of palladium-catalyzed isocyanide insertion
and C(sp3)ÀH activation as an effective procedure for the
construction of the heterocycles including the indole ske-
leton, with multibond formation.
Scheme 1. Strategy for Single and Multiple CÀC Bond For-
mation via C(sp3)ÀH Activation
Our initial efforts focused on optimization of the reac-
tion conditions using 2,6-dimethylphenyl isocyanide 1a
and iodobenzene 2a as test substrates (Table 1). Treatment
of 1a and 2a with stoichiometric amounts of palladium
acetate, tricyclohexylphosphine, which is known to be
effective for C(sp3)ÀH activation,2 and Cs2CO3 in DMF
at 100 °C gave the desired product 3a in 66% yield (entry 1).
When the amount of catalyst was decreased to 20 mol %,
the reaction proceeded to give 3a in 46% yield (entry 2).
Next, several ligands, including the bidentate ligand
(DPPF), the biphenyl-type ligand (biphPCy2), and bulkier
ligands (PtBu3 and Ad2PnBu12), were screened, and it was
found that Ad2PnBu effectively increased the yield (entries
3À6).3 However, lowering the amount of catalyst had a
negative impact on the yield (entry 7). Some reports on the
use of isocyanides have shown that an excess of isocyanide
deactivates the catalyst by forming palladium clusters.13
We assumed that the low conversions in the reactions were
Recently, several groups reported the cascade process
containing palladium-catalyzed isocyanide insertion and
C(sp2)ÀH activation for consice syntheses of carbo- and
heterocycles.7 While Jones and co-workers described the
indole formation from 2,6-disubstituted isocyanide via
Ru-catalyzed C(sp3)ÀH activation,8 there is no synthesis
of heterocycles using a combination of palladium-catalyzed
isocyanide insertion and C(sp3)ÀH activation. We believed
that this combination would enable concise syntheses of
various nitrogen-containing heterocycles and initially de-
signed the following cascade process based on this concept
(3) For recent work in our laboratory, see: Tsukano, C.; Okuno, M.;
Takemoto, Y. Angew. Chem., Int. Ed. 2012, 51, 2763.
(4) For selected examples of C(sp3)ÀH activation using a Pd(II)/(0)
ꢀ
catalyst system, see: (a) Novak, P.; Correa, A.; Gallardo-Donaire, J.;
ꢀ
(9) For recent reviews on the syntheses of indoles, see: (a) Mei, T.-S.;
Kou, L.; Ma, S.; Engle, K. M.; Yu, J.-Q. Synthesis 2012, 44, 1778. (b)
Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195. (c) Cacchi,
S.; Fabrizi, G. Chem. Rev. 2011, 111, DOI: 10.1021/cr100403z. (d) Song,
J. J.; Reeves, J. T.; Fandrick, D. R.; Tan, Z.; Yee, N. K.; Senanayake,
C. H. ARKIVOC 2010, 390. (e) Humphrey, G. R.; Kuethe, J. T. Chem.
Rev. 2006, 106, 2875.
(10) For selected examples on the syntheses of indoles with the
formation of CÀC bond between 2- and 3-position, see: (a) Seong,
C. M.; Park, C. M.; Choi, J.; Park, N. S. Tetrahedron Lett. 2009, 50,
1029. (b) Lee, S.; Lee, W.-M.; Sulikowski, G. A. J. Org. Chem. 1999, 64,
4224. (c) Tokuyama, H.; Yamashita, T.; Reding, M. T.; Kaburagi, Y.;
Martin, R. Angew. Chem., Int. Ed. 2011, 50, 12236. (b) Liegault, B.;
Fagnou, K. Organometallics 2008, 27, 4841. (c) Wang, D.-H.; Wasa, M.;
Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190. (d) Delcamp, J. H.;
White, M. C. J. Am. Chem. Soc. 2006, 128, 15076.
(5) For selected examples of C(sp3)ÀH activation using a Pd(II)/(IV)
ꢀ
ꢀ
ꢀ
~
catalyst system, see: (a) Iglesias, A.; Alvarez, R.; de Lera, A. R.; Muniz,
K. Angew. Chem., Int. Ed. 2012, 51, 2225. (b) He, G.; Zhao, Y.; Zhang,
S.; Lu, C.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3. (c) Ano, Y.; Tobisu,
M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984. (d) He, G.; Chen,
G. Angew. Chem., Int. Ed. 2011, 50, 5192. (e) Feng, Y.; Wang, Y.;
Landgraf, B.; Liu, S.; Chen, G. Org. Lett. 2010, 12, 3414. (f) Shabashov,
D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965. (g) Giri, R.; Maugel,
N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q.
J. Am. Chem. Soc. 2007, 129, 3510. (h) Zaitsev, V. G.; Shaboshov, D.;
Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
€
Fukuyama, T. J. Am. Chem. Soc. 1999, 121, 3791. (d) Furstner, A.;
Hupperts, A. J. Am. Chem. Soc. 1995, 117, 4468. (e) Fukuyama, T.;
Chen, X.; Peng, G. J. Am. Chem. Soc. 1994, 116, 3127. (f) Ito, Y.;
Kobayashi, K.; Seko, N.; Saegusa, T. Bull. Chem. Soc. Jpn. 1984, 57, 73.
(g) Houlihan, W. J.; Parrino, V. A.; Uike, Y. J. Org. Chem. 1981, 46,
4511. (h) Ito, Y.; Kobayashi, K.; Saegusa, T. J. Am. Chem. Soc. 1977, 99,
3532. (i) Jones, C. D. J. Org. Chem. 1972, 37, 3624.
(11) Onitsuka, K.; Suzuki, S.; Takahashi, S. Tetrahedron Lett. 2002,
43, 6197.
(6) For a recent review on the Pd-catalyzed cascade reaction, see:
Vlaar, T.; Ruijter, E.; Orru, R. V. A. Adv. Synth. Catal. 2011, 353, 809.
(7) (a) Wang, Y.; Wang, H.; Peng, J.; Zhu, Q. Org. Lett. 2011, 13,
4604. (b) Tobisu, M.; Imoto, S.; Ito, S.; Chatani, N. J. Org. Chem. 2010,
75, 4835. (c) Curran, D. P.; Du, W. Org. Lett. 2002, 4, 3215.
(8) (a) Hsu, G. C.; Kosar, W. P.; Jones, W. D. Organometallic 1994,
13, 385. (b) Jones, W. D.; Kosar, W. P. J. Am. Chem. Soc. 1986, 108,
5640.
(12) Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000,
39, 4153.
(13) Yamamoto, Y. Coord. Chem. Rev. 1980, 32, 193.
Org. Lett., Vol. 14, No. 16, 2012
4271