Journal of Medicinal Chemistry
Brief Article
(11) Lu, Y.; Wang, Z.; Li, C. M.; Chen, J.; Dalton, J. T.; Li, W.;
Miller, D. D. Synthesis, in vitro structure-activity relationship, and in
vivo studies of 2-arylthiazolidine-4-carboxylic acid amides as anticancer
agents. Bioorg. Med. Chem. 2010, 18, 477−495.
(12) Chen, J.; Wang, Z.; Li, C. M.; Lu, Y.; Vaddady, P. K.; Meibohm,
B.; Dalton, J. T.; Miller, D. D.; Li, W. Discovery of novel 2-aryl-4-
benzoyl-imidazoles targeting the colchicines binding site in tubulin as
potential anticancer agents. J. Med. Chem. 2010, 53, 7414−7427.
(13) Chen, J.; Li, C. M.; Wang, J.; Ahn, S.; Wang, Z.; Lu, Y.; Dalton,
J. T.; Miller, D. D.; Li, W. Synthesis and antiproliferative activity of
novel 2-aryl-4-benzoyl-imidazole derivatives targeting tubulin polymer-
ization. Bioorg. Med. Chem. 2011, 19, 4782−4795.
(14) Li, C. M.; Chen, J.; Lu, Y.; Narayanan, R.; Parke, D. N.; Li, W.;
Ahn, S.; Miller, D. D.; Dalton, J. T. Pharmacokinetic optimization of 4-
substituted methoxybenzoyl-aryl-thiazole and 2-aryl-4-benzoyl-imida-
zole for improving oral bioavailability. Drug Metab. Dispos. 2011, 39,
1833−1839.
(15) Li, C. M.; Wang, Z.; Lu, Y.; Ahn, S.; Narayanan, R.; Kearbey, J.
D.; Parke, D. N.; Li, W.; Miller, D. D.; Dalton, J. T. Biological activity
of 4-substituted methoxybenzoyl-aryl-thiazole: an active microtubule
inhibitor. Cancer Res. 2011, 71, 216−224.
(16) Wang, Z.; Chen, J.; Wang, J.; Ahn, S.; Li, C. M.; Lu, Y.; Loveless,
V. S.; Dalton, J. T.; Miller, D. D.; Li, W. Novel tubulin polymerization
inhibitors overcome multidrug resistance and reduce melanoma lung
metastasis. Pharm. Res. 2012, DOI: 10.1007/s11095-012-0726-4.
(17) Kuo, C. C.; Hsieh, H. P.; Pan, W. Y.; Chen, C. P.; Liou, J. P.;
Lee, S. J.; Chang, Y. L.; Chen, L. T.; Chen, C. T.; Chang, J. Y.
BPR0L075, a novel synthetic indole compound with antimitotic
activity in human cancer cells, exerts effective antitumoral activity in
vivo. Cancer Res. 2004, 64, 4621−4628.
(18) Kuppens, I. E.; Witteveen, P. O.; Schot, M.; Schuessler, V. M.;
Daehling, A.; Beijnen, J. H.; Voest, E. E.; Schellens, J. H. Phase I dose-
finding and pharmacokinetic trial of orally administered indibulin (D-
24851) to patients with solid tumors. Invest. New Drugs 2007, 25,
227−235.
(19) Wienecke, A.; Bacher, G. Indibulin, a novel microtubule
inhibitor, discriminates between mature neuronal and nonneuronal
tubulin. Cancer Res. 2009, 69, 171−177.
(20) Chen, J.; Wang, Z.; Lu, Y.; Dalton, J. T.; Miller, D. D.; Li, W.
Synthesis and antiproliferative activity of imidazole and imidazoline
analogs for melanoma. Bioorg. Med. Chem. Lett. 2008, 18, 3183−3187.
(21) Geney, R.; Ungureanu, M.; Li, D.; Ojima, I. Overcoming
multidrug resistance in taxane chemotherapy. Clin. Chem. Lab. Med.
2002, 40, 918−925.
(22) Verrills, N. M.; Kavallaris, M. Improving the targeting of tubulin-
binding agents: lessons from drug resistance studies. Curr. Pharm. Des.
2005, 11, 1719−1733.
(23) Dumontet, C.; Sikic, B. I. Mechanisms of action of and
resistance to antitubulin agents: microtubule dynamics, drug transport,
and cell death. J. Clin. Oncol. 1999, 17, 1061−1070.
(24) Takeda, M.; Mizokami, A.; Mamiya, K.; Li, Y. Q.; Zhang, J.;
Keller, E. T.; Namiki, M. The establishment of two paclitaxel-resistant
prostate cancer cell lines and the mechanisms of paclitaxel resistance
with two cell lines. Prostate 2007, 67, 955−967.
(25) Barbier, P.; Dorleans, A.; Devred, F.; Sanz, L.; Allegro, D.;
Alfonso, C.; Knossow, M.; Peyrot, V.; Andreu, J. M. Stathmin and
interfacial microtubule inhibitors recognize a naturally curved
conformation of tubulin dimers. J. Biol. Chem. 2010, 285, 31672−
31681.
(26) Dorleans, A.; Gigant, B.; Ravelli, R. B.; Mailliet, P.; Mikol, V.;
Knossow, M. Variations in the colchicine-binding domain provide
insight into the structural switch of tubulin. Proc. Natl. Acad. Sci. U.S.A.
2009, 106, 13775−13779.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The project was supported by Grant Number R01CA148706
from NIH/NCI. The contents are solely the responsibility of
the authors and do not necessarily represent the official views
of the NIH. Additional support came from GTx, Inc. We thank
Dr. Ryan Yates for providing access to an HPLC instrument.
We also thank Dr. Bob Moore and Ms. Peihong Guan from the
University of Tennessee Health Science Center for providing
access for the use of the Synergy 2 plate reader. We thank Dr.
Michael Mohler for the editorial work.
ABBREVIATIONS USED
■
ABI, 2-aryl-4-benzoyl-imidazoles; MDR, multidrug resistance;
Pgp, P-glycoprotein; SAR, structure−activity relationships;
TMS, tetramethylsilane; TBAF, tert-butylammonium fluoride;
RT, room temperature
REFERENCES
■
(1) Dumontet, C.; Jordan, M. A. Microtubule-binding agents: a
dynamic field of cancer therapeutics. Nat. Rev. Drug Discovery 2010, 9,
790−803.
(2) Jordan, M. A.; Wilson, L. Microtubules as a target for anticancer
drugs. Nat. Rev. Cancer 2004, 4, 253−265.
(3) Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance in
cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2,
48−58.
(4) Colabufo, N. A.; Pagliarulo, V.; Berardi, F.; Contino, M.; Inglese,
C.; Niso, M.; Ancona, P.; Albo, G.; Pagliarulo, A.; Perrone, R.
Bicalutamide failure in prostate cancer treatment: involvement of multi
drug resistance proteins. Eur. J. Pharmacol. 2008, 601, 38−42.
(5) La Regina, G.; Bai, R.; Rensen, W.; Coluccia, A.; Piscitelli, F.;
Gatti, V.; Bolognesi, A.; Lavecchia, A.; Granata, I.; Porta, A.; Maresca,
B.; Soriani, A.; Iannitto, M. L.; Mariani, M.; Santoni, A.; Brancale, A.;
Ferlini, C.; Dondio, G.; Varasi, M.; Mercurio, C.; Hamel, E.; Lavia, P.;
Novellino, E.; Silvestri, R. Design and synthesis of 2-heterocyclyl-3-
arylthio-1H-indoles as potent tubulin polymerization and cell growth
inhibitors with improved metabolic stability. J. Med. Chem. 2011, 54,
8394−8406.
(6) Peng, J.; Risinger, A. L.; Fest, G. A.; Jackson, E. M.; Helms, G.;
Polin, L. A.; Mooberry, S. L. Identification and biological activities of
new taccalonolide microtubule stabilizers. J. Med. Chem. 2011, 54,
6117−6124.
(7) Flynn, B. L.; Gill, G. S.; Grobelny, D. W.; Chaplin, J. H.; Paul, D.;
Leske, A. F.; Lavranos, T. C.; Chalmers, D. K.; Charman, S. A.;
Kostewicz, E.; Shackleford, D. M.; Morizzi, J.; Hamel, E.; Jung, M. K.;
Kremmidiotis, G. Discovery of 7-hydroxy-6-methoxy-2-methyl-3-
(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a tubulin poly-
merization inhibitor with potent antiproliferative and tumor vascular
disrupting properties. J. Med. Chem. 2011, 54, 6014−6027.
(8) Romagnoli, R.; Baraldi, P. G.; Brancale, A.; Ricci, A.; Hamel, E.;
Bortolozzi, R.; Basso, G.; Viola, G. Convergent synthesis and biological
evaluation of 2-amino-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as
microtubule targeting agents. J. Med. Chem. 2011, 54, 5144−5153.
(9) Lu, Y.; Li, C. M.; Wang, Z.; Chen, J.; Mohler, M. L.; Li, W.;
Dalton, J. T.; Miller, D. D. Design, synthesis, and SAR studies of 4-
substituted methoxylbenzoyl-aryl-thiazoles analogues as potent and
orally bioavailable anticancer agents. J. Med. Chem. 2011, 54, 4678−
4693.
(10) Lu, Y.; Li, C. M.; Wang, Z.; Ross, C. R., II; Chen, J.; Dalton, J.
T.; Li, W.; Miller, D. D. Discovery of 4-substituted methoxybenzoyl-
aryl-thiazole as novel anticancer agents: synthesis, biological
evaluation, and structure−activity relationships. J. Med. Chem. 2009,
52, 1701−1711.
E
dx.doi.org/10.1021/jm300564b | J. Med. Chem. XXXX, XXX, XXX−XXX