A. G. Montalban et al. / Tetrahedron Letters 53 (2012) 4276–4279
4279
2nd ed.; Longman Scientific & Technical: Essex, 1992; pp 223–236; (c) Davies,
D. T. In Aromatic Heterocyclic Chemistry; Davies, S. G., Ed.; Oxford University
Press: Oxford, 1992; pp 53–60.
mixture (as confirm by H NMR) of 16f, however, could not be fur-
ther resolved. In contrast, deprotonation of 2f with LDA followed
by iodination gave 16f in much lower yield (15%) along with start-
ing material. Base catalyzed dehydrohalogenation (vide supra) of
the diastereomeric mixture 16f gave, as expected, a single product
(18f) but again in low yield, especially at higher temperatures. We
noticed that both, 16f and in particular 18f decomposed readily.
Thus, 18f was converted into its far more stable optically active
4. Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron Lett. 1989, 30,
2129–2132.
5. Dobson, D.; Todd, A.; Gilmore, J. Synth. Commun. 1991, 21, 611–617.
6. (a) Berger, J. G.; Teller, S. R.; Pachter, I. J. J. Org. Chem. 1970, 35, 3122–3126; (b)
Murakami, Y.; Tani, M.; Ariyasu, T.; Nishiyama, C.; Watanabe, T.; Yokoyama, Y.
Heterocycles 1988, 27, 1855–1860. and references cited therein.
7. Massa, S.; Stefancich, G.; Artico, M.; Corelli, F.; Silvestri, R. Farmaco Ed. Sci. 1987,
42, 567–574.
8. Kasum, B.; Prager, R. H.; Tsopelas, C. Aust. J. Chem. 1990, 43, 355–365.
9. Benedetti, F.; Berti, F.; Nitti, P.; Pitaco, G.; Valentin, D. Gazz. Chim. Ital. 1990,
120, 25–28.
10. Stetter, H.; Lauterbach, R. Liebigs Ann. Chem. 1962, 655, 20–26.
11. (a) Matsumoto, M.; Watanabe, N. Heterocycles 1984, 22, 2313–2316. and
references cited therein; (b) Maiti, S.; Perumal, P. T.; Menendez, J. C.
Tetrahedron 2010, 66, 9512–9518; (c) Yadav, P. P.; Gupta, P.; Chaturvedi, A.
K.; Shukla, P. K.; Maurya, R. Bioorg. Med. Chem. 2005, 13, 1497–1505.
12. (a) Edstrom, E. D. Synlett 1995, 49–50. and references cited therein; (b)
Masaguer, C. F.; Raviña, E. Tetrahedron Lett. 1996, 37, 5171–5174. and
references cited therein.
20ꢁ
C
(½
a
ꢀ
ꢂ +133° at 1.9 mg/mL in CHCl3) alkoxy derivative 19 by
589nm
reacting it with bromoacetonitrile under basic conditions. The best
yields (48% over two steps) of 19 were obtained when both, the
dehydrohalogenation and alkylation steps were telescoped.
In Summary, we have developed a new synthesis of N-substi-
tuted 7-oxo-4,5,6,7-tetrahydroindoles and gained an understand-
ing of why the relative yields are lower when compared to the
corresponding 4-oxo-isomers under the conditions presented. Fur-
thermore, both, 4-, and 7-oxo-4,5,6,7-tetrahydroindoles were suc-
cessfully aromatized to their corresponding 4- and 7-oxoindoles
utilizing a novel protocol. In addition, the reaction sequences
appear to be stereospecific in nature resulting in enantiomerically
enriched N-substituted derivatives of both, 4-, and 7-oxo-4,5,6,7-
tetrahydroindoles and 4-, and 7-oxoindoles. Future work will
involve further optimization by, for example, conducting the
synthesis of 7-oxo-4,5,6,7-tetrahydroindoles under microwave
irradiation as recently demonstrated for the 4-oxo derivatives.22
13. Nayyar, N. K.; Hutchinson, D. R.; Martinelli, M. J. J. Org. Chem. 1997, 62, 982–
991.
14. Walsh, E. J., Jr.; Stone, G. B. Tetrahedron Lett. 1986, 27, 1127–1130.
15. Seki, M.; Sakamoto, T.; Suemune, H.; Kanematsu, K. J. Chem. Soc., Perkin Trans. 1
1997, 1707–1714.
16. Pirkle, W. H.; Sikkenga, D. L.; Pavlin, M. S. J. Org. Chem. 1977, 42, 384–
387.
17. General Procedure for the preparation of 4- and 7-oxotetrahydroindoles:
A
solution of 1 or 3 (0.10 g, 0.73 mmol) and the corresponding amine (3 equiv)
in 20% aqueous EtOH (ꢅ2 mL) was heated in a sealed tube at 150 °C for 12 or
36 h, respectively. The reaction mixture was poured into H2O (10 mL) and the
resulting aqueous solution extracted with CH2Cl2 (3 ꢆ 10 mL). The combined
organic extracts were dried (MgSO4), concentrated and the brown residue
subjected to column chromatography (silica) with EtOAc/light petroleum ether
as eluent.
Acknowledgments
We would like to thank Eli Lilly (A.G.M. and J.C.) and the Eras-
mus Scheme (S.M.B.) for generous support of our studies.
18. (a) Plieninger, H.; Klinga, K. Chem. Ber. 1968, 101, 2605–2607; (b) Remers, W.
A.; Weiss, M. J. J. Org. Chem. 1971, 36, 1241. and references cited therein.
19. (a) Hughes, B.; Suschitzky, H. J. Chem. Soc. 1965, 875–879; (b) Fatiadi, A. J.
Synthesis 1976, 133–167; (c) Jung, M. E.; Pan, Y.-G. J. Org. Chem. 1977, 42, 3961–
3963; (d) Fleming, I.; Paterson, I. Synthesis 1979, 736–738; (e) Danishefsky, S.;
Chackalamannil, S.; Harrison, P.; Silvestri, M.; Cole, P. J. Am. Chem. Soc. 1985,
107, 2474–2484; (f) Enda, J.; Kuwajima, I. J. Am. Chem. Soc. 1985, 107, 5495–
5501; (g) Knölker, H.-J. Synlett 1992, 371–387; (h) Knölker, H.-J.; Bauermeister,
M.; Pannek, J.-B.; Bläser, D.; Boese, R. Tetrahedron 1993, 49, 841–862.
20. Williams, D. R.; Nishitani, K. Tetrahedron Lett. 1980, 21, 4417–4420.
21. Kotnis, A. S. Tetrahedron Lett. 1991, 32, 3441–3444.
References and notes
1. Bronner, S. M.; Im, G.-Y. J.; Garg, N. K. Indoles and Indolizidines. In Heterocycles
in Natural Product Synthesis; Majumdar, K. C., Chattopadhyay, S. K., Eds.; Wiley-
VCH & Co. KGaA: Weinheim, 2011; pp 221–265. and references cited therein.
2. Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875–2911. and references
cited therein.
22. Piras, L.; Ghiron, C.; Minetto, G.; Taddei, M. Tetrahedron Lett. 2008, 49, 459–
462.
3. (a) Joule, J. A.; Mills, K.; Smith, G. F. In Heterocyclic Chemistry, 3rd ed.; Chapman
& Hall: London, 1995; pp 305–349; (b) Gilchrist, G. L. In Heterocyclic Chemistry,