Table 1 Photophysical and electrochemical data for HBC compounds 10a–c
UV-vis
PL
Optical energy gapd
(eV)
Eox onsete
(V)
Ered onsete
(V)
EHOMO
(eV)
ELUMO
(eV)
f
g
lmax (nm),
lmax (nm),
lmax (nm),
lmax (nm),
solutiona
filmb
solutionc
filmb
10a
10b
10c
365 (1.8)
365 (0.9)
370 (0.4)
374
365
373
490
502
502
550
532
582
2.79
2.73
2.70
0.33
0.64
0.62
ꢁ2.20
ꢁ2.07
ꢁ2.00
ꢁ5.43
ꢁ5.74
ꢁ5.71
ꢁ2.64
ꢁ3.01
ꢁ3.01
a
b
Absorption measured in CHCl3, 1 ꢀ 10ꢁ5 M, 295 K, corresponding extinction coefficient (ꢀ 105 cm L molꢁ1) in brackets. Film deposited on
glass slides by spin coating from chlorobenzene solution (25 mg mLꢁ1). Photoluminescence (PL) measured in CHCl3, 1 ꢀ 10ꢁ5 M, 295 K,
c
d
excitation wavelength = 365 nm. Determined from the onset of absorption. Cyclic voltammogram measured in chlorobenzene–MeCN 10 : 1,
e
1 ꢀ 10ꢁ3 M, Bu4NPF6 (0.1 M), 295 K, scan rate = 50 mV sꢁ1, versus Fc/Fc+
from ELUMO = EHOMO + optical energy gap.
.
Determined from EHOMO = ꢁ(E
f
onset
ox
g
+ 5.10) (eV). Calculated
The normalised UV-vis and photoluminescence (PL) spectra
of compounds 10a–c in chloroform solution are shown in
Fig. 2. All three compounds have UV-vis absorption bands at
285 nm and 365 nm with vibrational broadening of the 365 nm
band for 10b and 10c (Fig. 2). The absorption onset for 10b
and 10c is slightly red-shifted compared to that for 10a. The
optical energy gap of compounds 10a–c was calculated to be
2.79, 2.73 and 2.70 eV respectively (Table 1). The PL spectrum
of 10b and 10c is also red shifted compared to that of 10a
(Fig. 2). The PL intensity decreased from 10a to 10c. UV-vis
and PL spectrum of thin films of 10a–c showed broadened and
red-shifted signals. This is an expected outcome for HBC
systems which have a tendency to aggregate through p–p
interactions.
This work was supported by the Australian Solar Institute
(fellowship and project grant), the Australian Research Council
(DP0877325), the Victorian Organic Solar Cell Consortium
(DBI-VSA and DPI-ETIS) and the University of Melbourne.
Notes and references
1 (a) J. Wu, W. Pisula and K. Mullen, Chem. Rev., 2007, 107, 718–747;
¨
(b) H. Seyler, B. Purushothaman, D. J. Jones, A. B. Holmes and
W. W. H. Wong, Pure Appl. Chem., 2012, 84, 1047–1067.
2 (a) W. Pisula, X. Feng and K. Mullen, Adv. Mater., 2010, 22,
¨
3634–3649; (b) J. P. Hill, W. Jin, A. Kosaka, T. Fukushima,
H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii and
T. Aida, Science, 2004, 304, 1481–1483.
3 M. Z. Yin, J. Shen, W. Pisula, M. H. Liang, L. J. Zhi and
K. Mullen, J. Am. Chem. Soc., 2009, 131, 14618–14619.
Cyclic voltammogram (CV) of 10a–c in chlorobenzene–
MeCN 10 : 1 with 0.1 M Bu4N PF6 electrolyte was recorded
with a glassy carbon working electrode, an Ag/AgCl reference
electrode and a platinum counter electrode (see ESIz for
details). The oxidation onset in the CV was used to estimate
the highest occupied molecular orbital (HOMO) energy of the
compounds (Table 1). The corresponding lowest unoccupied
molecular orbital (LUMO) energies were calculated from the
HOMO energies and the optical band gap. The electron
withdrawing effect of the F and CF3 groups is reflected in
the lowering of the HOMO and LUMO energies for 10b and
10c (Table 1). Density functional theory calculations on
simplified structures of 10a–c gave frontier orbital energies
that agree with experimental values (Fig. S35, ESIz). It is
expected that both HBC compounds 10b and 10c will display
electron transport behaviour in organic electronic devices. The
performance of these materials in OFET devices is currently
under investigation.
¨
4 (a) W. W. H. Wong, T. B. Singh, D. Vak, W. Pisula, C. Yan,
X. L. Feng, E. L. Williams, K. L. Chan, Q. Mao, D. J. Jones,
C.-Q. Ma, K. Mullen, P. Bauerle and A. B. Holmes, Adv. Funct.
¨
¨
Mater., 2010, 20, 927–938; (b) W. W. H. Wong, C.-Q. Ma,
W. Pisula, A. Mavrinskiy, X. Feng, H. Seyler, D. J. Jones,
K. Mullen, P. Bauerle and A. B. Holmes, Chem.–Eur. J., 2011,
¨
¨
17, 5549–5560; (c) S. Ren, C. Yan, D. Vak, D. J. Jones,
A. B. Holmes and W. W. H. Wong, Adv. Funct. Mater., 2012,
22, 2015–2026; (d) J. M. Mativetsky, M. Kastler, R. C. Savage,
D. Gentilini, M. Palma, W. Pisula, K. Mullen and P. Samori, Adv.
Funct. Mater., 2009, 19, 2486–2494.
¨
5 T. Mori, H. Takeuchi and H. Fujikawa, J. Appl. Phys., 2005,
97, 066102.
6 (a) S. H. Wadumethrige and R. Rathore, Org. Lett., 2008, 10,
5139–5142; (b) Z. Zeng, Z. Guan, Q.-H. Xu and J. Wu, Chem.–Eur.
J., 2011, 17, 3837–3841.
7 J. Wu, M. Baumgarten, M. G. Debije, J. M. Warman and
K. Mullen, Angew. Chem., Int. Ed., 2004, 43, 5331–5335.
¨
8 Y. Kikuzawa, T. Mori and H. Takeuchi, Org. Lett., 2007, 9,
4817–4820.
9 Q. Zhang, P. Prins, S. C. Jones, S. Barlow, T. Kondo, Z. An,
L. D. A. Siebbeles and S. R. Marder, Org. Lett., 2005, 7, 5019–5022.
10 E. Clar and C. T. Ironside, Proc. Chem. Soc., London, 1958, 150.
A new set of reaction conditions for the oxidative cyclo-
dehydrogenation of electron-poor arenes has been developed.
Bromo- and fluoro-HBC derivatives, which were difficult to
obtain previously, can be prepared from hexaphenylbenzene
precursors by treatment with a combination of DDQ and
CF3SO3H. In addition, the introduction of electron withdrawing
F and CF3 groups has a significant influence on the frontier
orbital energies of the HBC core paving the way for the use of
these compounds as electron transport materials. Future
studies are focussed on the role of strong acids in oxidative
cyclodehydrogenation of electron-poor arenes and the appli-
cation of the products in organic electronics.
11 (a) S. Ito, M. Wehmeier, J. Diedrich-Brand, C. Kubel, R. Epsch,
¨
(b) A. Fechtenkotter, N. Tchebotareva, M. D. Watson and
¨
J. P. Rabe and K. Mullen, Chem.–Eur. J., 2000, 6, 4327–4342;
¨
K. Mullen, Tetrahedron, 2001, 57, 3769–3783.
¨
12 L. Y. Zhai, R. Shukla and R. Rathore, Org. Lett., 2009, 11, 3474–3477.
13 J. Wu, M. D. Watson, L. Zhang, Z. Wang and K. Mullen, J. Am.
Chem. Soc., 2004, 126, 177–186.
¨
14 J. Wu, A. Fechtenkotter, J. Gauss, M. D. Watson, M. Kastler,
¨
¨
C. Fechtenkotter, M. Wagner and K. Mullen, J. Am. Chem. Soc.,
2004, 126, 11311–11321.
15 (a) L. Zhai, R. Shukla, S. H. Wadumethrige and R. Rathore,
J. Org. Chem., 2010, 75, 4748–4760; (b) B. T. King, J. Kroulik,
C. R. Robertson, P. Rempala, C. L. Hilton, J. D. Korinek and
L. M. Gortari, J. Org. Chem., 2007, 72, 2279–2288.
c
8068 Chem. Commun., 2012, 48, 8066–8068
This journal is The Royal Society of Chemistry 2012