Full Paper
ether/ethyl acetate, 80:20 to 85:15) furnished product 3kc
by silica gel column chromatography (petroleum ether/ethyl acet-
(167.4 mg, 62 %) as a colourless viscous liquid [TLC control (petro- ate, 97:03 to 95:05) furnished product 3nd (151.0 mg, 58 %) as a
leum ether/ethyl acetate, 85:15), Rf(1k) = 0.20, Rf(3kc) = 0.70, UV
colourless viscous liquid [TLC control (petroleum ether/ethyl acet-
detection]. IR (MIR-ATR, 4000–600 cm–1): νmax = 2945, 2925, 2846,
ate, 90:10), Rf(1n) = 0.20, Rf(3nd) = 0.90, UV detection]. IR (MIR-ATR,
˜
1672, 1612, 1454, 1371, 1220, 1151, 970, 759, 682 cm–1
.
1H NMR
4000–600 cm–1): νmax = 2940, 2933, 2847, 1901, 1710, 1640, 1453,
˜
(CDCl3, 400 MHz): δ = 7.50 (d, J = 8.3 Hz, 2 H, Ar-H), 7.41 (d, J =
1.9 Hz, 1 H, Ar-H), 7.19–7.14 (m, 2 H, Ar-H), 7.05–7.01 (m, 1 H, Ar-
H), 6.82 (d, J = 8.3 Hz, 1 H, Ar-H), 6.02 (s, 2 H, Ar-OCH2), 3.43–3.38
1376, 1220, 1150, 904, 755 cm–1
.
1H NMR (CDCl3, 400 MHz): δ =
7.80 (d, J = 8.3 Hz, 2 H, Ar-H), 7.35 (d, J = 8.3 Hz, 2 H, Ar-H), 7.25 (d,
J = 8.3 Hz, 2 H, Ar-H), 6.98 (d, J = 8.3 Hz, 2 H, Ar-H), 3.38–3.31 (m,
(m, 1 H, CH), 2.78–2.70 (m, 2 H, CH2), 2.18–2.08 (m, 1 H, CH2), 1.77– 1 H, CH), 2.58–2.44 (m, 2 H, CH2), 2.41 (s, 3 H, Ar-CH3), 2.16–2.08 (m,
1.68 (m, 1 H, CH2), 1.24 (d, J = 6.8 Hz, 3 H, CH3) ppm. 13C NMR
(CDCl3, 100 MHz): δ = 201.8 (s, C=O), 151.6 (s, Ar-C), 148.2 (s, Ar-C),
141.1 (s, Ar-C), 132.8 (d, Ar-CH), 131.2 (s, Ar-C), 130.4 (d, Ar-CH),
127.6 (d, Ar-CH), 127.4 (d, Ar-CH), 124.3 (d, Ar-CH), 108.2 (d, Ar-CH),
107.8 (d, Ar-CH), 101.8 (d, Ar-OCH2), 39.8 (d, CH), 33.9 (t, CH2), 33.7
(t, CH2), 17.5 (q, CH3) ppm. HRMS (ESI+): calcd. for C18H18BrO3 [M +
H]+ 361.0434; found 361.0443.
1 H, CH2), 1.82–1.73 (m, 2 H, CH2), 1.60–1.54 (m, 1 H, CH2), 0.86 (t,
J = 7.3 Hz, 3 H, CH3) ppm. 13C NMR (CDCl3, 100 MHz): δ = 203.5 (s,
C=O), 143.8 (s, Ar-C), 140.9 (s, Ar-C), 134.9 (s, Ar-C), 131.3 (d, 2 C,
Ar-CH), 130.2 (d, 2 C, Ar-CH), 129.3 (d, 2 C, Ar-CH), 128.3 (d, 2 C, Ar-
CH), 119.5 (s, Ar-C), 46.4 (d, CH), 33.2 (t, CH2), 33.1 (t, CH2), 25.7 (t,
CH2), 21.6 (q, CH3), 11.8 (q, CH3) ppm. HRMS (ESI+): calcd. for
C
19H22BrO [M + H]+ 345.0849; found 345.0848.
4-(2-Bromophenyl)-2-methyl-1-(3,4,5-trimethoxyphenyl)butan-
1-one (3lc): GP-2 was performed with allylic alcohol 1l (168.0 mg, Acknowledgments
0.75 mmol) and alkene 2c (150.0 mg,0.825 mmol) in the presence
We are grateful to the Department of Science and Technology-
of KOtBu (126.0 mg, 1.125 mmol) in dry THF (1.5 mL), and the
reaction mixture was stirred at 80 °C for 8 h. Purification of the
crude material by silica gel column chromatography (petroleum
ether/ethyl acetate, 70:20 to 80:20) furnished product 3lc (185.7 mg,
61 %) as a colourless viscous liquid [TLC control (petroleum ether/
ethyl acetate, 70:30), Rf(1l) = 0.20, Rf(3lc) = 0.70, UV detection]. IR
Science and Engineering Research Board (DST-SERB), New Delhi
(no. SB/S1/OC-39/2014) for the financial support. S. B. thanks
the Ministry of Human Resource Development (MHRD) for the
award of a research fellowship.
(MIR-ATR, 4000–600 cm–1): νmax = 2947, 2923, 2846, 1669, 1612,
˜
Keywords: Isomerization · Allylic compounds · Ketones ·
Domino reactions · Hydrogen transfer
1454, 1371, 1220, 1152, 900, 750 cm–1
.
1H NMR (CDCl3, 400 MHz):
δ = 7.50 (d, J = 7.8 Hz, 1 H, Ar-H), 7.21–7.16 (m, 4 H, Ar-H), 7.06–
7.01 (m, 1 H, Ar-H), 3.91 (s, 3 H, Ar-OCH3), 3.88 (s, 6 H, 2×Ar-OCH3),
3.47–3.42 (m, 1 H, CH), 2.79–2.75 (m, 2 H, CH2), 2.19–2.10 (m, 1 H,
CH2), 1.79–1.72 (m, 1 H, CH2), 1.26 (d, J = 6.8 Hz, 3 H, CH3) ppm.
13C NMR (CDCl3, 100 MHz): δ = 202.6 (s, C=O), 153.1 (s, 2 C, Ar-C),
142.4 (s, Ar-C), 141.1 (s, Ar-C), 132.8 (d, Ar-CH), 131.7 (s, Ar-C), 130.5
(d, Ar-CH), 127.7 (d, Ar-CH), 127.5 (d, Ar-CH), 124.4 (s, Ar-C), 105.7
(d, 2 C, Ar-CH), 60.9 (q, Ar-OCH3), 56.3 (q, 2 C, Ar-OCH3), 39.6 (d,
CH), 33.8 (t, CH2), 33.7 (t, CH2), 17.4 (q, CH3) ppm. HRMS (ESI+): calcd.
for C20H24BrO4 [M + H]+ 407.0852; found 407.0856.
[1] a) C. H. Oh, S. Karmakar, H. Park, Y. Ahn, J. W. Kim, J. Am. Chem. Soc.
2010, 132, 1792–1793; b) S. G. Newman, J. K. Howell, N. Nicolaus, M.
Lautens, J. Am. Chem. Soc. 2011, 133, 14916–14919; c) R. Gai, D. F. Back,
G. Zeni, J. Org. Chem. 2015, 80, 10278–10287; d) X. Y. Duan, X. L. Yang,
P. P. Jia, M. Zhang, B. Han, Org. Lett. 2015, 17, 6022–6025; e) Q. Xu, J.
Chen, H. Tian, X. Yuan, S. Li, C. Zhou, J. Liu, Angew. Chem. Int. Ed. 2014,
53, 225–229; Angew. Chem. 2014, 126, 229; f) Y. Wu, L. Liu, Y. Liu, D.
Wang, Y. Chen, R. V. August, J. Org. Chem. 2007, 72, 9383–9386; g) X.-W.
Lan, N.-X. Wang, C.-B. Bai, C.-L. Lan, T. Zhang, S.-L. Chen, Y. Xing, Org.
Lett. 2016, 18, 5986–5989; h) S. E. Denmark, G. L. Beutner, Angew. Chem.
Int. Ed. 2008, 47, 1560–1638; Angew. Chem. 2008, 120, 1584.
[2] a) A. Studer, D. P. Curran, Nat. Chem. 2014, 6, 765–773; b) A. Studer, D. P.
Curran, Angew. Chem. Int. Ed. 2011, 50, 5018–5022; Angew. Chem. 2011,
123, 5122; c) W. Liu, H. Cao, H. Zhang, H. Zhang, K. H. Chung, C. He, H.
Wang, F. Y. Kwong, A. Lei, J. Am. Chem. Soc. 2010, 132, 16737–16740;
d) E. Shirakawa, K. Itoh, T. Higashino, T. Hayashi, J. Am. Chem. Soc. 2010,
132, 15537–15539; e) S. Zhou, G. M. Anderson, B. Mondal, E. Doni, V.
Ironmonger, M. Kranz, T. Tuttle, J. A. Murphy, Chem. Sci. 2014, 5, 476–
482; f) H. Yi, A. Jutand, A. Lei, Chem. Commun. 2015, 51, 545–548; g) C.-L.
Sun, Z.-J. Shi, Chem. Rev. 2014, 114, 9219–9280; h) M. Pichette Drapeau,
I. Fabre, L. Grimaud, I. Ciofini, T. Ollevier, M. Taillefer, Angew. Chem. Int.
Ed. 2015, 54, 10587–10591; Angew. Chem. 2015, 127, 10733; i) W. Liu, L.
Li, C.-J. Li, Nat. Commun. 2015, 6, 6526.
[3] a) S. Manzini, A. Poater, D. J. Nelson, L. Cavallo, S. P. Nolan, Chem. Sci.
2014, 5, 180–188; b) A. Bartoszewicz, M. M. Jeżowska, K. Laymand, J.
Möbus, B. Martín-Matute, Eur. J. Inorg. Chem. 2012, 1517–1530; c) A.
Azua, S. Sanz, E. Peris, Organometallics 2010, 29, 3661–3664; d) M. T.
Reetz, H. Guo, Synlett 2006, 13, 2127–2129; e) R. C. Van Der Drift, E.
Bouwman, E. Drent, J. Organomet. Chem. 2002, 650, 1–24; f) E. Larionov,
L. Lin, L. Guénée, C. Mazet, J. Am. Chem. Soc. 2014, 136, 16882–16894;
g) M. Ito, S. Kitahara, T. Ikariya, J. Am. Chem. Soc. 2005, 127, 6172–6173;
h) K. Ren, B. Hu, M. Zhao, Y. Tu, X. Xie, Z. Zhang, J. Org. Chem. 2014, 79,
2170–2177; i) A. Vazquez-Romero, A. Bermejo Gomez, B. Martin-Matute,
ACS Catal. 2015, 5, 708–714; j) K. Voronova, M. Purgel, A. Udvardy, A. C.
Bényet, A. Katho, F. Joó, Organometallics 2013, 32, 4391–4401; k) N. Ahl-
sten, H. Lundberg, B. Martin-Matute, Green Chem. 2010, 12, 1628–1633.
[4] R. A. Sheldon, I. W. C. E. Arends, U. Hanefeld, Green Chemistry and Cataly-
sis, Wiley-VCH, Weinheim, 2007, pp. 1–47.
2-Ethyl-4-phenyl-1-(p-tolyl)butan-1-one (3na): GP-2 was per-
formed with allylic alcohol 1n (121.6 mg, 0.75 mmol) and alkene
2a (150.0 mg,0.825 mmol) in the presence of KOtBu (126.0 mg,
1.125 mmol) in dry THF (1.5 mL), and the reaction mixture was
stirred at 80 °C for 12 h. Purification of the crude material by silica
gel column chromatography (petroleum ether/ethyl acetate, 97:03
to 95:05) furnished product 3na (119.0 mg, 60 %) as a colourless
viscous liquid [TLC control (petroleum ether/ethyl acetate, 90:10),
Rf(1n) = 0.20, Rf(3na) = 0.90, UV detection]. IR (MIR-ATR, 4000–
600 cm–1): νmax = 2942, 2920, 2846, 1705, 1668, 1619, 1554, 1377,
˜
1
1226, 1159, 910, 850 cm–1. H NMR (CDCl3, 400 MHz): δ = 7.80 (d,
J = 7.8 Hz, 2 H, Ar-H), 7.27–7.15 (m, 5 H, Ar-H), 7.12 (d, J = 7.8 Hz,
2 H, Ar-H), 3.39–3.33 (m, 1 H, CH), 2.65–2.49 (m, 2 H, CH2), 2.41 (s,
3 H, Ar-CH3), 2.17–2.08 (m, 1 H, CH2), 1.83–1.75 (m, 2 H, CH2), 1.62–
1.56 (m, 1 H, CH2), 0.86 (t, J = 7.5 Hz, 3 H, CH3) ppm. 13C NMR
(CDCl3, 100 MHz): δ = 203.8 (s, C=O), 143.7 (s, Ar-C), 141.9 (s, Ar-C),
136.0 (s, Ar-C), 129.3 (d, 2 C, Ar-CH), 128.4 (d, 2 C, Ar-CH), 128.3 (d,
2 C, Ar-CH), 128.3 (d, 2 C, Ar-CH), 125.8 (d, Ar-CH), 46.5 (d, CH), 33.6
(t, CH2), 33.4 (t, CH2), 25.5 (t, CH2), 21.6 (q, CH3), 11.8 (q, CH3) ppm.
HRMS (ESI+): calcd. for C19H23O [M + H]+ 267.1743; found 267.1745.
4-(4-Bromophenyl)-2-ethyl-1-(p-tolyl)butan-1-one (3nd): GP-2
was performed with allylic alcohol 1n (121.6 mg, 0.75 mmol) and
alkene 2d (150.0 mg,0.825 mmol) in the presence of KOtBu
(126.0 mg, 1.125 mmol) in dry THF (1.5 mL), and the reaction mix-
ture was stirred at 80 °C for 8 h. Purification of the crude material
Eur. J. Org. Chem. 2017, 3886–3895
3894
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim