Journal of Agricultural and Food Chemistry
Article
droxyacid synthase inhibitor. Bioorg. Med. Chem. 2009, 17 (8),
3011−3017.
(19) Li, Y. X.; Luo, Y. P.; Xi, Z.; Niu, C.; He, Y. Z.; Yang, G. F.
Design and syntheses of novel phthalazin-1(2H)-one derivatives as
acetohydroxyacid synthase inhibitors. J. Agric. Food Chem. 2006,
54 (24), 9135−9139.
(20) Wang, J.; Tan, H.; Li, Y.; Ma, Y.; Li, Z.; Guddat, L. W. Chemical
synthesis, in vitro acetohydroxyacid synthase (AHAS) inhibition,
herbicidal activity, and computational studies of isatin derivatives. J.
Agric. Food Chem. 2011, 59 (18), 9892−9900.
(21) Wang, J. G.; Xiao, Y. J.; Li, Y. H; Ma, Y.; Li, Z. M. Identification
of some novel AHAS inhibitors via molecular docking and virtual
screening approach. Bioorg. Med. Chem. 2007, 15 (1), 374−380.
(22) Choi, K. J.; Yu, Y. G.; Hahn, H. G.; Choi, J. D.; Yoon, M. Y.
Characterization of acetohydroxyacid synthase from Mycobacterium
tuberculosis and the identification of its new inhibitor from the
screening of a chemical library. FEBS Lett. 2005, 579 (21), 4903−
4310.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We appreciate associate professor Cong-Wei Niu for her kind
assistance in the measurement of W754L inhibition constants
of the typical disulfides.
REFERENCES
■
(1) Duggleby, R. G.; Pang, S. S. Acetohydroxyacid synthase. J.
Biochem. Mol. Biol. 2000, 33 (1), 1−36.
(2) Chaleff, R. S.; Mauvais, C. J. Acetolactate synthase is the site of
action of two sulfonylurea herbicides in higher plants. Science 1984,
224, 1443−1445.
(3) LaRossa, R. A.; Schloss, J. V. The sulfonylurea herbicide
sulfometuron methyl is an extremely potent and selective inhibitor of
acetolactate synthase in Salmonella typhimurium. J. Biol. Chem. 1984,
259, 8753−8757.
(23) Choi, K. J.; Noh, K. M.; Kim, D. E.; Ha, B. H.; Kim, E. E.; Yoon,
M. Y. Identification of the catalytic subunit of acetohydroxyacid
synthase in Haemophilus influenzae and its potent inhibitors. Arch.
Biochem. Biophys. 2007, 466 (1), 24−30.
(4) Ray, T. B. Site of action of chlorsulfuron: inhibition of valine and
isoleucine biosynthesis of plants. Plant Physiol. 1984, 75, 827−831.
(5) Whitcomb, C. E. An introduction to ALS-inhibiting herbicides.
Toxicol. Ind. Health 1999, 15 (1−2), 231−239.
(24) Zhang, L.; Chou, C. P.; Moo-Young, M. Disulfide bond
formation and its impact on the biological activity and stability of
recombinant therapeutic proteins produced by Escherichia coli
expression system. Biotechnol. Adv. 2011, 29 (6), 923−929.
(6) McCourt, J. A.; Duggleby, R. G. Acetohydroxyacid synthase and
its role in the biosynthetic pathway for branched-chain amino acids.
Amino Acids 2006, 31, 173−210.
(7) Pang, S. S.; Guddat, L. W.; Duggleby, R. G. Crystallization of the
catalytic subunit of Saccharomyces cerevisiae acetohydroxyacid synthase.
Acta Crystallogr. 2001, D57, 1321−1323.
́ ́
(25) Arguello-García, R.; Medina-Campos, O. N.; Perez-Hernandez,
̈
N.; Pedraza-Chaverrí, J.; Ortega-Pierres, G. Hypochlorous acid
scavenging activities of thioallyl compounds from garlic. J. Agric.
Food Chem. 2010, 58, 11226−11233.
(8) Pang, S. S.; Duggleby, R. G.; Guddat, L. W. Crystal structure of
yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J.
Mol. Biol. 2002, 317, 249−262.
(26) Chu, H. L.; Wang, B. S.; Duh, P. D. Effects of selected organo-
sulfur compounds on melanin formation. J. Agric. Food Chem. 2009,
57 (15), 7072−7077.
(27) Vogt, A.; Tamura, K.; Watson, S.; Lazo, J. S. Antitumor
imidazolyl disulfide IV-2 causes irreversible G(2)/M cell cycle arrest
without hyperphosphorylation of cyclin-dependent kinase Cdk1. J.
Pharmacol. Exp. Ther. 2000, 294 (3), 1070−1075.
(28) Wang, B.-L.; Ma, N; Wang, J.-G.; Ma, Y.; Li, Z.-M.; Leng, X. B.
Synthesis and dimeric crystal structure of sulfonylurea compound
N-[2-(4-methyl)pyrimidinyl]-N′-2-methoxycarbonyl-benzene sulfony-
lurea. Chin. J. Struct. Chem. 2004, 23, 783−787.
(29) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr.,
Sect. A 2008, 64, 112−122.
(30) Chang, A. K.; Duggleby, R. G. Herbicide-resistant forms of
Arabidopsis thaliana acetohydroxyacid synthase: characterization of the
catalytic properties and sensitivity to inhibitors of four defined
mutants. Biochem. J. 1998, 333, 765−777.
(31) Wang, J.-G.; Li, Z.-M.; Ma, N.; Wang, B.-L.; Jiang, L.; Pang, S.
S.; Lee, Y.-T.; Guddat, L. W.; Duggleby, R. G. Structure-activity
relationships for a new family of sulfonylurea herbicides. J. Comput.-
Aided Mol. Des. 2005, 19, 801−820.
(32) Cramer, M.; Cramer, R. D.; Jones, D. M. Comparative
molecular field analysis. 1. Effect of shape on binding of steroids to
carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959−5967.
(33) Zhu, Y. Q.; Wu, C.; Li, H. B.; Zou, X. M.; Si, X. K.; Hu, F. Z.;
Yang, H. Z. Design, synthesis, and quantitative structure-activity
relationship study of herbicidal analogues of pyrazolo[5,1-d] [1,2,3,5]-
tetrazin-4(3H)ones. J. Agric. Food Chem. 2007, 55 (4), 1364−1369.
(34) Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible
docking method using an incremental construction algorithm. J. Mol.
Biol. 1996, 261, 470−489.
(9) Pang, S. S.; Guddat, L. W.; Duggleby, R. G. Molecular basis of
sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J. Biol.
Chem. 2003, 278, 7639−7644.
(10) McCourt, J. A.; Pang, S. S.; Guddat, L. W.; Duggleby, R. G.
Elucidating the specificity of sulfonylurea herbicide binding to
acetohydroxyacid synthase. Biochemistry 2005, 44, 2330−2338.
(11) McCourt, J. A.; Pang, S. S.; King-Scott, J.; Guddat, L. W.;
Duggleby, R. G. Herbicide binding sites revealed in the structure of
plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. U.S.A. 2006,
103, 569−573.
(12) Wang, J.-G.; Lee, P.; Dong, Y.-H.; Pang, S.-S.; Duggleby, R. G.;
Li, Z.-M.; Guddat, L. W. Crystal structures of two novel sulfonylurea
herbicides in complex with Arabidopsis thaliana acetohydroxyacid
synthase. FEBS J. 2009, 276, 1282−1290.
(13) Xiong, Y.; Liu, J.; Yang, G. F.; Zhan, C. G. Computational
determination of fundamental pathway and activation barriers for
acetohydroxyacid synthase-catalyzed condensation reactions of α-keto
acids. J. Comput. Chem. 2010, 31 (8), 1592−1602.
(14) Duggleby, R. G.; Pang, S. S.; Yu, H.; Guddat, L. W. Systematic
characterization of mutations in yeast acetohydroxyacid synthase:
interpretation of herbicide-resistance data. Eur. J. Biochem. 2003, 270,
2895−2904.
(15) He, Y. Z.; Li, Y. X.; Zhu, X. L.; Xi, Z.; Niu, C.; Wan, J.; Zhang,
L.; Yang, G. F. Rational design based on bioactive conformation
analysis of pyrimidinylbenzoates as acetohydroxyacid synthase
inhibitors by integrating molecular docking, CoMFA, CoMSIA, and
DFT calculations. J. Chem. Inf. Model. 2007, 47 (6), 2335−2344.
(16) Duggleby, R. G.; McCourt, J. A.; Guddat, L. W. Structure and
mechanism of inhibition of plant acetohydroxyacid synthase. Plant
Physiol. Biochem. 2008, 46, 309−324.
(17) Chen, C. N.; Chen, Q.; Liu, Y. C.; Zhu, X. L.; Niu, C. W.; Xi, Z.;
Yang, G. F. Syntheses and herbicidal activity of new triazolopyr-
imidine-2-sulfonamides as acetohydroxyacid synthase inhibitor. Bioorg.
Med. Chem. 2010, 18 (14), 4897−4904.
(18) Chen, C. N.; Lv, L. L.; Ji, F. Q.; Chen, Q.; Xu, H.; Niu, C. W.;
Xi, Z.; Yang, G. F. Design and synthesis of N-2,6-difluorophenyl-5-
methoxyl-1,2,4-triazolo[1,5-a]-pyrimidine-2-sulfonamide as acetohy-
(35) Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. LIGPLOT: a
program to generate schematic diagrams of protein-ligand interactions.
Protein Eng. 1995, 8, 127−134.
(36) Han, M.; Lee, J. T.; Hahn, H. G. A traceless, one-pot
preparation of unsymmetric disulfides from symmetric disulfides
through a repeated process involving sulfenic acid and thiosulfinate
intermediates. Tetrahedron Lett. 2011, 52, 236−239.
8292
dx.doi.org/10.1021/jf302206x | J. Agric. Food Chem. 2012, 60, 8286−8293