ChemComm
Communication
K. K. Balasubramanian, Org. Biomol. Chem., 2012, 10, 6420–6431;
(c) K. J. Padiya, S. Gavade, B. Kardile, M. Tiwari, S. Bajare, M. Mane,
V. Gaware, S. Varghese, D. Harel and S. Kurhade, Org. Lett., 2012, 14,
2814–2817; (d) P. Liu, Z. Wang and X. Hu, Eur. J. Org. Chem.,
2012, 1994–2000; (e) G. Verardo, E. Bombardella, C. D. Venneri
and P. Strazzolini, Eur. J. Org. Chem., 2009, 6239–6244; ( f ) C. Han
and J. A. Porco Jr, Org. Lett., 2007, 9, 1517–1520; (g) H. Lebel and
O. Leogane, Org. Lett., 2006, 8, 5717–5720; (h) S. H. Lee,
H. Matsushita, B. Clapham and K. D. Janda, Tetrahedron, 2004,
60, 3439–3443; (i) M. K. Leung, J. L. Lai, K. H. Lau, H. H. Yu and
H. J. Hsiao, J. Org. Chem., 1996, 61, 4175–4179; ( j) S. Braverman,
M. Cherkinsky, L. Kedrova and A. Reiselman, Tetrahedron Lett.,
1999, 40, 3235–3238.
7 D. J. Diaz, A. K. Darko and L. M. White, Eur. J. Org. Chem., 2007,
4453–4465.
8 (a) C. Wu, H. Cheng, R. Liu, Q. Wang, Y. Hao, Y. Yu and F. Zhao,
Green Chem., 2010, 12, 1811–1816; (b) J. Paz, C. P. Balado, B. Iglesias
and L. Munoz, J. Org. Chem., 2010, 75, 3037–3046; (c) F. Shi, Y. Deng,
T. Sima, J. Peng, Y. Gu and B. Qiao, Angew. Chem., Int. Ed., 2003, 42,
3257–3260.
9 (a) K. Hirano and M. Miura, Chem. Commun., 2012, 48, 10704–10714;
(b) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215–1292;
(c) C. Liu, H. Zhang, W. Shi and A. Lei, Chem. Rev., 2011, 111,
1780–1824; (d) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110,
1147–1169; (e) A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew.
Chem., Int. Ed., 2011, 50, 11062–11087; ( f ) C. J. Li, Acc. Chem. Res.,
2009, 42, 335–344; (g) Handbook of C–H Transformations: Applications
in Organic Synthesis, ed. G. Dyker, Wiley-VCH, Weinheim, 2005;
(h) G. Dyker, Angew. Chem., Int. Ed., 1999, 38, 1698–1712.
10 (a) Y. Wu, P. Y. Choy, F. Mao and F. Y. Kwong, Chem. Commun.,
2013, 49, 689–691; (b) D. Yang, S. Ding, J. Huang and K. Zhao, Chem.
Commun., 2013, 49, 1211–1213; (c) J. Wang, C. Liu, J. Yuan and
A. Lei, Angew. Chem., Int. Ed., 2013, 52, 2256–2259; (d) L. Wang,
H. Huang, D. L. Priebbenow, F. F. Pan and C. Bolm, Angew. Chem.,
Int. Ed., 2013, 52, 3478–3480; (e) J. He, M. Wasa, K. S. L. Chan and
J. Q. Yu, J. Am. Chem. Soc., 2013, 135, 3387–3390; ( f ) J. Hu,
E. A. Adogla, Y. Ju, D. Fan and Q. Wang, Chem. Commun., 2012,
48, 11256–11258.
11 (a) W. Zhou, Y. Liu, Y. Yang and G. J. Deng, Chem. Commun., 2012,
48, 10678–10680; (b) X. F. Cheng, Y. Li, Y. M. Su, F. Yin, J. Y. Wang,
J. Sheng, H. U. Vora, X. S. Wang and J. Q. Yu, J. Am. Chem. Soc., 2013,
135, 1236–1239; (c) R. Xie, Y. Ling and H. Fu, Chem. Commun., 2012,
48, 12210–12212; (d) C. He, J. Hao, H. Xu, Y. Mo, H. Liu, J. Han and
A. Lei, Chem. Commun., 2012, 48, 11073–11075; (e) T. S. Mei,
X. Wang and J. Q. Yu, J. Am. Chem. Soc., 2009, 131, 10806–10807.
12 (a) Z. Liu, J. Chang, S. Chen, E. Shi, Y. Xu and X. Wan, Angew. Chem.,
Int. Ed., 2012, 51, 3231–3235; (b) K. Xu, Y. Hu, S. Zhang, Z. Zha and
Z. Wang, Chem.–Eur. J., 2012, 18, 9793–9797; (c) T. He, H. Li, P. Li
and L. Wang, Chem. Commun., 2011, 47, 8946–8948; (d) W. P. Mai,
H. H. Wang, Z. C. Li, J. W. Yuan, Y. M. Xiao, L. R. Yang, P. Mao and
L. B. Yu, Chem. Commun., 2012, 48, 10117–10119; (e) J. Kim, J. Choi,
K. Shin and S. Chang, J. Am. Chem. Soc., 2012, 134, 2528–2531;
( f ) S. Ding and N. Jiao, J. Am. Chem. Soc., 2011, 133, 12374–12377;
(g) G. Zhang, X. Ren, J. Chen, M. Hu and J. Cheng, Org. Lett., 2011,
13, 5004–5007; (h) J. Kim and S. Chang, J. Am. Chem. Soc., 2010, 132,
10272–10274; (i) H. Jiang, A. Lin, C. Zhu and Y. Cheng, Chem.
Commun., 2013, 49, 819–821; ( j) X. Li, B. Li, J. You and J. Lan,
Org. Biomol. Chem., 2013, 11, 1925–1928.
13 (a) G. S. Kumar, B. Pieber, K. R. Reddy and C. O. Kappe, Chem.–Eur.
J., 2012, 18, 6124–6128; (b) R. A. Kumar, C. U. Maheswari,
S. Ghantasala, C. Jyothi and K. R. Reddy, Adv. Synth. Catal., 2011,
353, 401–410; (c) K. R. Reddy, C. U. Maheswari, M. Venkateshwar
and M. L. Kantam, Adv. Synth. Catal., 2009, 351, 93–96;
(d) K. R. Reddy, C. U. Maheswari, M. Venkateshwar, S. Prashanthi
and M. L. Kantam, Tetrahedron Lett., 2009, 50, 2050–2053;
(e) K. R. Reddy, M. Venkateshwar, C. U. Maheswari and
S. Prashanthi, Synth. Commun., 2009, 40, 186–195; ( f ) K. R. Reddy,
C. U. Maheswari, M. Venkateshwar and M. L. Kantam, Eur. J. Org.
Chem., 2008, 3619–3622.
increase the yields by running the reactions for a longer time
resulted in the formation of unidentified side products. The
reaction also worked well for the 2-substituted pyrrole and
indole derivatives (Scheme 3, 5e–f). This clearly shows that
substitution of 2-carbonyl functionality adjacent to the amine
group might help in product formation via assisting the metal-
chelation pathway. A similar observation was also made in
our previous work on copper catalysed oxidative coupling of
2-carbonyl phenols with formamides.
Regarding the mechanism, it is generally believed that these
reactions involve a radical pathway and the formation of a
formamide radical is proposed to be one of the key steps.12c,d,15
Moreover, there is no product formation in the presence of
TEMPO. These lines of evidence favor the mechanism involving
the direct coupling of a formamide radical with the coordinated
amine complex, which is similar to the synthesis of urea
derivatives via coupling of N-alkoxy amides with formamides.12i
In summary, we have developed a copper catalyzed oxidative
cross coupling of formamides with amines for the preparation
of unsymmetrical urea derivatives. Noteworthy features of the
present work are direct coupling of formamides with simple
aliphatic amines, utilization of N-methylformamide as a for-
mamide source and also application towards the synthesis of
chiral urea derivatives. Further studies on the application of
oxidative couplings, particularly with chiral aminoacids, are
under investigation.
G. S. K, R. A. K, and N. V. R. acknowledge Council of
Scientific and Industrial Research (CSIR) and P. S. K. acknowl-
edges University Grants Commission (UGC) for fellowship.
K. R. R. thanks CSIR, India, for financial support under network
project CSC-0125.
Notes and references
1 For reviews on substituted urea derivatives, see (a) H. Q. Li, P. C. Lv,
T. Van and H. L. Zhu, Anti-Cancer Agents Med. Chem., 2009, 9,
471–480; (b) I. Gallou, Org. Prep. Proced. Int., 2007, 4, 355–383;
(c) S. Batra, Z. Tusi and S. Madappaa, Curr. Med. Chem.: Anti-Infect.
Agents., 2006, 5, 135–160; (d) F. Bigi, R. Maggi and G. Sartori, Green
Chem., 2000, 2, 140–148.
2 (a) X. He, M. Zhong, J. Yang, Z. Wu, Y. Xiao, H. Guo and X. Hu, Chem.
Biol. Drug Des., 2012, 79, 771–779; (b) R. D. Fabio, C. Griffante, G. Alvaro,
G. Pentassuglia, D. A. Pizzi, D. Donati, T. Rossi, G. Guercio, M. Mattioli,
Z. Cimarosti, C. Marchioro, S. Provera, L. Zonzini, D. Montanari,
S. Melotto, P. A. Gerrard, D. G. Trist, E. Ratti and M. Corsi, J. Med.
Chem., 2009, 52, 3238–3247; (c) H. Q. Li, T. T. Zhu, T. Yan, Y. Luo and
H. L. Zhu, Eur. J. Med. Chem., 2009, 44, 453–459; (d) P. Cao, X. F. Huang,
H. Ding, H. M. Ge, H. Q. Li, B. F. Ruan and H. L. Zhu, Chem. Biodiversity,
2007, 4, 881–886; (e) A. K. Debnath, J. Med. Chem., 1999, 42, 249–259;
( f ) X. Zhang, J. Rodrigues, L. Evans, B. Hinkle, L. Ballantyne and
M. Pena, J. Org. Chem., 1997, 62, 6420–6423.
3 R. T. Loto, C. A. Loto and A. P. I. Popoola, J. Mater. Environ. Sci.,
2012, 3, 885–894.
4 (a) S. Yu, A. Haight, B. Kotecki, L. Wang, K. Lukin and D. R. Hill,
J. Org. Chem., 2009, 74, 9539–9542; (b) J. Clayden and U. Hennecke,
Org. Lett., 2008, 10, 3567–3570; (c) J. Clayden, J. Dufour,
D. M. Grainger and M. Helliwell, J. Am. Chem. Soc., 2007, 129,
7488–7489; (d) J. Gao, H. Li, Y. Zhang and Y. Zhang, Green Chem.,
2007, 9, 572–576.
14 (a) G. S. Kumar, C. U. Maheswari, R. A. Kumar, M. L. Kantam and
K. R. Reddy, Angew. Chem., Int. Ed., 2011, 50, 11748–11751;
(b) P. S. Kumar, G. S. Kumar, R. A. Kumar, N. V. Reddy and
K. R. Reddy, Eur. J. Org. Chem., 2013, 1218–1222.
5 (a) X. Y. Cao, J. C. Zheng, Y. X. Li, Z. C. Shu, X. L. Sun and
B. Q. Wang, Tetrahedron, 2010, 66, 9703–9707; (b) Z. Zhang and
P. R. Schreiner, Chem. Soc. Rev., 2009, 38, 1187–1198.
6 (a) E. V. Vinogradova, B. P. Fors and S. L. Buchwald, J. Am. Chem.
Soc., 2012, 134, 11132–11135; (b) A. Velavan, S. Sumathi and
15 C. Zhang, C. Tang and N. Jiao, Chem. Soc. Rev., 2012, 41, 3464–3484.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.