D. D. Dixon et al. / Bioorg. Med. Chem. Lett. 22 (2012) 5322–5325
5325
will be used in future studies to obtain information on the binding
motifs of the arylphenone cannabinoid analogues for the CB2
receptor. Additionally, our results suggest that the 3-benzothio-
pheno group is an excellent moiety to be incorporated in cannabin-
ergic photolabeling probes.
Acknowledgments
Acknowledgment is made to The National Institute on Drug
Abuse (DA07215, 2P01 DA09158) for generous support of this
research.
Supplementary data
Supplementary data associated with this article can be found, in
Figure 3. Compound 41 inhibits the specific binding of [3H]CP-55,940 to mCB2
receptor. HEK293 cell membranes expressing wild type mouse cannabinoid
receptor 2 (mCB2) were suspended in TME buffer (25 mM Tris-Base, 5 mM MgCl2,
1 mM EDTA, pH 7.4) with 0.1% BSA, containing 0.34 lM 41 (i.e., 10-fold Ki of 41 for
References and notes
WT mCB2). A membrane devoid of 41 was used as a parallel control. Incubations of
both samples were performed in silanized glass tubes for 30 min in a 37 °C water
bath. Subsequently, the samples were irradiated for 1 h using Black-Ray long
wavelength ultraviolet lamp at 365 nm in ice-cold silanized Petri dishes.24 The
membranes were washed once with 1% BSA TME buffer to remove unbound ligands,
and once with TME buffer (no BSA) to remove BSA. Saturation binding assays were
1. Pertwee, R. G. Br. J. Pharmacol. 2006, 147, S163.
2. Di Marzo, V.; Petrocellis, L. D. Ann. Rev. Med. 2006, 57, 553.
3. Herkenham, M.; Lynn, A. B.; Little, M. D.; Johnson, M. R.; Melvin, L. S.; de Costa,
B. R.; Rice, K. C. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1932.
4. Compton, D. R.; Prescott, W. R., Jr.; Martin, B. R.; Siegel, C.; Gordon, P. M.;
Razdan, R. K. J. Med. Chem. 1991, 34, 3310.
carried out after photo-labeling using [3H]CP-55940 as
a
radioligand.20 The
5. Martin, B. R.; Jefferson, R.; Winckler, R.; Wiley, J. L.; Huffman, J. W.; Crocker, P.
J.; Saha, B.; Razdan, R. K. J. Pharmacol. Exp. Ther. 1999, 290, 1065.
6. Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.;
Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R.; Mechoulam, R.; Pertwee,
R. G. Pharmacol. Rev. 2002, 54, 161.
membrane sample with 41 (342 nM; 10 ꢂ Ki) exhibited a 67% reduction in its
Bmax when compared to control.
7. Lambert, D. M.; Fowler, C. J. J. Med. Chem. 2005, 48, 5059.
8. Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Young, A. C.; Bonner, T. I. Nature
1990, 346, 561.
9. Munro, S.; Thomas, K. L.; Abu-Shaar, M. Nature 1993, 365, 61.
10. Thakur, G. A.; Nikas, S. P.; Li, C.; Makriyannis, A. In Handbook of Experimental
Pharmacology; Pertwee, R. G., Ed.; Springer-Verlag: New York, 2005; pp 209–
246.
11. Pei, Y.; Mercier, R. W.; Anday, J. K.; Thakur, G. A.; Zvonok, A. M.; Hurst, D.;
Reggio, P. H.; Janero, D. R.; Makriyannis, A. Chem. Biol. 2008, 15, 1207.
12. Papahatjis, D. P.; Kourouli, T.; Makriyannis, A. J. Heterocycl. Chem. 1996, 33, 559.
13. Krishnamurthy, M.; Ferreira, A. K.; Moore, B. M., II Bioorg. Med. Chem. Lett. 2003,
13, 3487.
14. Makriyannis, A.; Nikas, S. P.; Khanolkar, A. D.; Thakur, G. A.; Lu, D. 2007, Novel
bicyclic cannabinoids. US 2007/0135388 A1.
15. (a) Dorman, G.; Prestwich, G. D. Biochemistry 1994, 33, 5661; (b) Galardy, R. E.;
Craig, L. C.; Printz, M. P. Nat. New Biol. 1973, 242, 127.
16. (a) Wilson, R. S.; May, E. L.; Martin, B. R.; Dewey, W. L. J. Med. Chem. 1976, 19,
1165; (b) Drake, D. J.; Jensen, R. S.; Busch-Petersen, J.; Kawakami, J. K.;
Fernandez-Garcia, M. C.; Fan, P.; Makriyannis, A.; Tius, M. A. J. Med. Chem. 1998,
41, 3596.
17. Le Goanvic, D.; Tius, M. A. J. Org. Chem. 2006, 71, 7800.
18. Dixon, D. D.; Sethumadhavan, D.; Benneche, T.; Banaag, A. R.; Tius, M. A.;
Thakur, G. A.; Bowman, A.; Wood, J.; Makriyannis, A. J. Med. Chem. 2010, 53,
5656.
the analogue (40) with lower affinity and selectivity for mCB2. The
limited binding data included here did not allow us to carry out a
full exploration of the arylphenone pharmacophore for the CB2
receptor. This will be attempted in future work when a larger data-
base becomes available. However, our computational exercise
underscores the steric factors associated with mCB2 binding and
provide a basis for the design of higher affinity analogues.
Photolabeling of mCB2. To explore the value of this class of
cannabinoid analogues as photolabeling reagents for the CB recep-
tors we tested some of our compounds for their abilities to interact
covalently with the mCB2 receptor. The experiment was carried
out using membrane preparations obtained from a HEK293 cell
line expressing mCB2. We used methodology developed in our lab-
oratory with cannabinergic ligands carrying different photoactivat-
able groups23 while employing conditions reported earlier for
labeling the NK-1 receptor with ligands incorporating a benzophe-
none moiety.24 Of the heteroaryl benzophenones tested, the two
benzothiophenones (40 and 41) exhibited the highest ability to
photolabel the mCB2 receptor (77% and 67% respectively; Fig. 3).
The meta-trifluoro analogue 49 also labeled the receptor, however,
less effectively.25 Conversely, the 3-indolyl analogue (50) failed to
label mCB2. These very successful results confirmed the value of
the 3-arylphenone moieties as useful photolabels for the CB2
receptors.
Conclusions. In this SAR study we explored the value of can-
nabinoid analogues carrying 3-arylphenone moieties in lieu of
the 3-alkyl chains found in the phytocannabinoid structures as po-
tential photoaffinity ligands for the mCB2 receptor. The lead com-
pound 41 provided evidence that the 3-benzothiophene analogue
had the highest affinity and selectivity for mCB2. Our results
underscore the important steric requirements of the arylphenone
pharmacophoric moiety for the CB2 receptor and provide the basis
for the design of later generation analogues with improved affinity
profiles. Importantly, we demonstrated that 41 is capable of phot-
olabeling the mCB2 receptor in excellent yields. This compound
19. Archer, R. A.; Blanchard, W. B.; Day, W. A.; Johnson, D. W.; Lavagnino, E. R.;
Ryan, C. W.; Baldwin, J. E. J. Org. Chem. 1977, 42, 2277.
20. Cheng, Y.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.
21.
A conformational search of the aryl substituent was performed using
optimized potentials for liquid simulations (OPLS) force field, the
cannabinoid tricyclic moiety was held fixed. Conformers with greater than
0.5 Å root-mean square deviation (rmsd) within 6 kcal molꢁ1 of the global
minimum were retained. All calculations were performed in Macromodel. See:
(a) Jorgensen, W. L.; Tiradorives, J. J. Am. Chem. Soc. 1988, 110, 1657; (b)
Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B
2001, 105, 6474; (c) MacroModel, version 9.7; Schrödinger, LLC: New York, NY,
2009.
22. Lu, D.; Meng, Z.; Thakur, G. A.; Fan, P.; Steed, J.; Tartal, C. L.; Hurst, D. P.; Reggio,
P.; Deschamps, J. R.; Parrish, D. A.; George, C.; Jarbe, T. U. C.; Lamb, R. J.;
Makriyannis, A. J. Med. Chem. 2005, 48, 4576.
23. (a) Burstein, S. H.; Audette, C. A.; Charalambous, A.; Doyle, S. A.; Guo, Y.;
Hunter, S. A.; Makriyannis, A. Biochem. Biophys. Res. Commun. 1991, 176, 492;
(b) Li, C.; Xu, W.; Vadivel, S. K.; Fan, P.; Makriyannis, A. J. Med. Chem. 2005, 48,
6423.
24. (a) Bremer, A. A.; Leeman, S. E.; Boyd, N. D. FEBS Lett. 2000, 486, 43; (b) Bremer,
A. A.; Leeman, S. E.; Boyd, N. D. J. Biol. Chem. 2001, 276, 22857.
25. Analogue 49 was used to label hCB2. The extent of labeling was 30%.