Journal of Medicinal Chemistry
Article
(16) Pochetti, G.; Montanari, R.; Gege, C.; Chevrier, C.; Taveras, A.
G.; Mazza, F. Extra binding region induced by non-zinc chelating
inhibitors into the S1′ subsite of matrix metalloproteinase 8 (MMP-8). J.
Med. Chem. 2009, 52, 1040−1049.
(17) Devel, L.; Rogakos, V.; David, A.; Makaritis, A.; Beau, F.;
Cuniasse, P.; Yiotakis, A.; Dive, V. Development of selective inhibitors
and substrate of matrix metalloproteinase-12. J. Biol. Chem. 2006, 281,
11152−11160.
(30) Neri, D.; Supuran, C. T. Interfering with pH regulation in tumours
as a therapeutic strategy. Nat. Rev. Drug Discovery 2011, 10, 767−777.
(31) McDonald, P. C.; Winum, J.-Y.; Supuran, C. T.; Dedhar, S. Recent
Developments in Targeting Carbonic Anhydrase IX for Cancer
Therapeutics. Oncotarget 2012, 3, 84−97.
(32) Lou, Y.; McDonald, P. C.; Oloumi, A.; Chia, S. K.; Ostlund, C.;
Ahmadi, A.; Kyle, A.; Auf dem Keller, U.; Leung, S.; Huntsman, D. G.;
Clarke, B.; Sutherland, B. W.; Waterhouse, D.; Bally, M. B.; Roskelley, C.
D.; Overall, C. M.; Minchinton, A.; Pacchiano, F.; Carta, F.; Scozzafava,
A.; Touisni, N.; Winum, J. Y.; Supuran, C. T.; Dedhar, S. Targeting
tumor hypoxia: suppression of breast tumor growth and metastasis by
novel carbonic anhydrase IX inhibitors. Cancer Res. 2011, 71, 3364−76.
(33) McIntyre, A.; Patiar, S.; Wigfield, S.; Li, J. L.; Ledaki, I.; Turley, H.;
Leek, R.; Snell, C.; Gatter, K.; Sly, W. S.; Vaughan-Jones, R. D.; Swietach,
P.; Harris, A. L. Carbonic anhydrase IX promotes tumor growth and
necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin.
Cancer Res. 2012, 18, 3100−11.
(18) Veerendhar, A.; Reich, R.; Breuer, E. Phosphorus based inhibitors
of matrix metalloproteinases. C. R. Chimie 2010, 13, 1191−1202.
(19) Lopez-Otín, C.; Matrisian, L. M. Emerging roles of proteases in
́
tumour suppression. Nat. Rev. Cancer 2007, 7, 800−808.
(20) Morrison, C. J.; Butler, G. S.; Rodriguez, D.; Overall, C. M. Matrix
metalloproteinase proteomics: substrates, targets, and therapy. Curr.
Opin. Cell Biol. 2009, 21, 645−653.
(21) Farkas, E.; Katz, Y.; Bhusare, S.; Reich, R.; Roschenthaler, G.-V.;
̈
Konigsmann, M.; Breuer, E. Carbamoylphosphonate Based Matrix
̈
Metalloproteinase (MMP) Inhibitor Metal Complexes - Solution
Studies and Stability Constants. Towards a Zinc Selective Binding
Group. J. Biol. Inorg. Chem. 2004, 9, 307−315.
(34) Chen, R.; Schlossman, A.; Breuer, E.; Hagele, G.; Tillmann, C.;
̈
Van Gelder, J. M.; Golomb, G. Long-Chain Functional Bisphospho-
nates: Synthesis, Anticalcification, and Antiresorption Activity. Heter-
oatom Chem. 2000, 11, 470−479.
(22) Breuer, E.; Salomon, C. J.; Katz, Y.; Chen, W.; Lu, S.;
Roschenthaler, G.-V.; Hadar, R.; Reich, R. Carbamoylphosphonates -
̈
(35) Harel, E.; Rubinstein, A.; Chen, W.; Breuer, E.; Tirosh, B.
Aminoalkylcarbamoylphosphonates reduce TNFa release from acti-
vated immune cells. Bioorg. Med. Chem. Lett. 2010, 20, 6518−6523.
(36) Frant, J. Ph.D. Thesis; Hebrew University of Jerusalem, 2010.
A New Class of In Vivo Active Matrix Metalloproteinase Inhibitors 1.
Alkyl- and Cycloalkylcarbamoylphosphonic acids. J. Med. Chem. 2004,
47, 2826−2832.
(23) Reich, R.; Katz, Y.; Hadar, R.; Breuer, E. Carbamoylphosphonate
MMP inhibitors 3. In vivo evaluation of cyclopentylcarbamoylphos-
phonic acid, CPCPA, in experimental metastasis and angiogenesis. Clin.
Cancer Res. 2005, 11, 3925−3929.
́
(37) Cecchi, A.; Hulikova, A.; Pastorek, J.; Pastorekova, S.; Scozzafava,
A.; Winum, J. Y.; Montero, J. L.; Supuran, C. T. Carbonic anhydrase
inhibitors. Design of fluorescent sulfonamides as probes of tumor-
associated carbonic anhydrase IX that inhibit isozyme IX-mediated
acidification of hypoxic tumors. J. Med. Chem. 2005, 48, 4834−4841.
(38) Pastorekova, S.; Pastorek, J. in Carbonic Anhydrase - Its Inhibitors
and Activators, Supuran, C. T., Ed.; CRC Press: Boca Raton, 2004; pp
255−281.
(24) Breuer, E.; Katz, Y.; Hadar, R.; Reich, R. Carbamoylphosphonate
MMP Inhibitors 4. The influence of chirality and geometrical isomerism
on the potency and selectivity of inhibition. Tetrahedron: Asymmetry
2004, 15, 2415−2420.
(25) Hoffman, A.; Qadri, B.; Frant, J.; Katz, Y.; Bhusare, S.; Breuer, E.;
Hadar, R.; Reich, R. Carbamoylphosphonate Matrix Metalloproteinase
Inhibitors 6. cis-2-Aminocyclohexylcarbamoyl phosphonic Acid. A
Novel Orally Active Antimetastatic Matrix Metalloproteinase-2
Selective Inhibitor −Synthesis, and Pharmacodynamic and Pharmaco-
kinetic Analysis. J. Med. Chem. 2008, 51, 1406−1414.
(26) Frant, J.; Veerendhar, A.; Chernilovsky, T.; Nedvetzki, S.;
Vaksman, O.; Hoffman, A.; Breuer, E.; Reich, R. Carbamoylphospho-
nates 9 - Orally active, antimetastatic, non-toxic, diphenyl ether-derived
carbamoylphosphonate matrix metalloproteinase inhibitors. ChemMed-
Chem 2011, 6, 1471−1477.
(39) Reich, R.; Blumenthal, M.; Liscovitch, M. Role of phospholipase
D in laminin-induced production of gelatinase A (MMP-2) in metastatic
cells. Clin. Exp. Metastasis 1995, 13, 134−140.
(40) Grant, D. S.; Tashiro, K.; Segui-Real, B.; Yamada, Y.; Martin, G.
R.; Kleinman, H. K. Two different laminin domains mediate the
differentiation of human endothelial cells into capillary-like structures in
vitro. Cell 1989, 58, 933−943.
(41) Stockwin, L. H.; Blonder, J.; Bumke, M. A.; Lucas, D. A.; Chan, K.
C.; Conrads, T. P.; Issaq, H. J.; Veenstra, T. D.; Newton, D. L.; Rybak, S.
M. Proteomic Analysis of Plasma Membrane from Hypoxia-Adapted
Malignant Melanoma. J. Proteome Res. 2006, 5, 2996−3007.
(42) (a) Rusconi, S.; Innocenti, A.; Vullo, D.; Mastrolorenzo, A.;
Scozzafava, A.; Supuran, C. T. Carbonic anhydrase inhibitors.
Interaction of isozymes I, II, IV, V, and IX with phosphates, carbamoyl
phosphate, and the phosphonate antiviral drug foscarnet. Bioorg. Med.
Chem. Lett. 2004, 14, 5763−5767. (b) Winum, J.-Y.; Innocenti, A.;
Gagnard, V.; Montero, J.-L.; Scozzafava, A.; Vullo, D.; Supuran, C. T.
Carbonic anhydrase inhibitors. Interaction of isozymes I, II, IV, V, and
IX with organic phosphates and phosphonates. Bioorg. Med. Chem. Lett.
2005, 15, 1683−1686. (c) Temperini, C.; Innocenti, A.; Guerri, A.;
Scozzafava, A.; Rusconi, S.; Supuran, C. T. Phosph(on)ate as a zinc-
binding group in metalloenzyme inhibitors: X-ray crystal structure of the
antiviral drug foscarnet complexed to human carbonic anhydrase. Bioorg.
Med. Chem. Lett. 2007, 17, 2210−2215. (d) De Simone, G.; Supuran, C.
T. (In)organic anions as carbonic anhydrase inhibitors. J. Inorg. Biochem.
2012, 111, 117−129.
(43) (a) Scozzafava, A.; Supuran, C. T. Carbonic Anhydrase and Matrix
Metalloproteinase Inhibitors: Sulfonylated Amino Acid Hydroxamates
with MMP Inhibitory Properties Act as Efficient Inhibitors of CA
Isozymes I, II, and IV, and N-Hydroxysulfonamides Inhibit Both These
Zinc Enzymes. J. Med. Chem. 2000, 43, 3677−3687. (b) Esteves, M. A.;
Ortet, O.; Capelo, A.; Supuran, C. T.; Marques, S. M.; Santos, M. A. New
hydroxypyrimidinone-containing sulfonamides as carbonic anhydrase
inhibitors also acting as MMP inhibitors. Bioorg. Med. Chem. Lett. 2010,
20, 3623−3627.
(27) Supuran, C. T. Carbonic anhydrases: novel therapeutic
applications for inhibitors and activators. Nat. Rev. Drug Discovery
2008, 7, 168−181.
(28) (a) Supuran, C. T. Carbonic anhydrases as drug targets − general
presentation. In Drug Design of Zinc-Enzyme Inhibitors: Functional,
Structural, and Disease Applications, Supuran, C. T., Winum, J.-Y., Eds.;
Wiley: Hoboken, 2009; pp 15−38. (b) Winum, J.-Y.; Montero, J.-L.;
Scozzafava, A.; Supuran, C. T. Zinc binding functions in the design of
carbonic anhydrase inhibitors. In Drug Design of Zinc-Enzyme Inhibitors:
Functional, Structural, and Disease Applications, Supuran, C. T., Winum,
J.-Y., Eds.; Wiley: Hoboken, 2009; pp 39−72. (c) Alterio, V.; Di Fiore,
A.; D’Ambrosio, K.; Supuran, C. T.; De Simone, G. X-Ray
crystallography of CA inhibitors and its importance in drug design. In
Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease
Applications, Supuran, C. T., Winum, J.-Y., Eds.; Wiley: Hoboken, 2009;
pp 73−138. (d) Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.
T.; De Simone, G. Multiple Binding Modes of Inhibitors to Carbonic
Anhydrases: How to Design Specific Drugs Targeting 15 Different
Isoforms? Chem. Rev. 2012, 112, 4421−4468.
(29) Svastova,
Gibadulinova, A.; Casini, A.; Cecchi, A.; Scozzafava, A.; Supuran, C.
T.; Pastorek, J.; Pastorekova, S. Hypoxia activates the capacity of tumor-
́ ́ ́ ́
E.; Hulíkova, A.; Rafajova, M.; Zat’ovicova, M.;
́
́
associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett.
2004, 577, 439−445.
G
dx.doi.org/10.1021/jm300981b | J. Med. Chem. XXXX, XXX, XXX−XXX