´
227
J.G. Małecki, A. Maron / Polyhedron 44 (2012) 221–227
[2] C.G. Hotze, J.G. Haasnoot, J. Reedijk, J. Inorg. Biochem. 96 (2003) 152.
ter with a significant share of p-orbitals of bzimpy ligand. The tran-
[3] Y. Nakabayashi, Y. Hirosaki, O. Yamauchi, Bioelectrochemistry 69 (2006) 216.
[4] A. Batista, M.O. Santiago, C.L. Donnici, I.S. Moreira, P.C. Healy, S.J. Berners-Price,
S.L. Queiroz, Polyhedron 20 (2001) 2123.
[5] Xiang-Yong Lu, Hui-Jun Xu, Xue-Tai Chen, Inorg. Chem. Commun. 12 (2009)
887.
[6] Amardeep Singh, Gopal Das, Biplab Mondal, Polyhedron 27 (2008) 2563.
[7] Huai-Xia Yang, Yan-Ju Liu, Lin Zhao, Ke-Zhi Wang, Spectrochimica Acta A. 76
(2010) 146.
sitions proceed between the frontier HOMOs and LUMOs (mainly
LUMO+1/+2). Due to the localization of LUMO, LUMO+1/+2 on the
bzimpy and share of this ligand in HOMOs involved in the transi-
tions, the Ligand-to-Ligand Charge Transfer character plays role in
the UV–Vis spectrum of the complexes.
Summarizing two new ruthenium(II) complexes with 2,6-bis-
(benzimidazol-2-yl)-pyridine functions as bidentate ligand were
synthesized and characterized by infra red, proton and phosphorus
nuclear magnetic resonance, electronic absorption spectroscopy
and X-ray crystallography. In the complexes the bzimpy ligand ex-
ists as protonated in [RuH(CO)(bzimpy)(PPh3)2]ClÁCH3OH complex
and deprotonated form in [RuH(CO)(bzimpy)(PPh3)2]ÁCH3OH ob-
tained in the reaction in the presence of azide anion. In the crystal
structure of the complexes, some types of noncovalent interactions
between aromatic rings have been found. Electronic structures of
the complexes have been determined using the density functional
theory (DFT) method, and employed for discussion of its proper-
ties. The bzimpy ligands play significant role in their electronic
structure and have a dominant participation in the UV–Vis spectra.
The lack of luminescence of these complexes is probably related
with the mixed nature of the transitions in which the MLCT transi-
tions have significant share of the LLCT character.
[8] N. Bharti, M.R. Maurya, F. Naqvi, A. Azam, Bioorg. Med. Chem. Lett. 10 (2000)
2243.
ˇ
[9] M. Boca, R.F. Jameson, W. Linert, Coord. Chem. Rev. 255 (2011) 290.
[10] W. Linert, M. Konecny, F. Renz, J. Chem. Soc., Dalton Trans. (1994) 1523.
[11] X. Xiaoming, M. Haga, T. Matsumura-lnoue, Y. Ru, A.W. Addison, K. Kano, J.
Chem. Soc., Dalton Trans. (1993) 2477.
[12] E. Ceniceros-Gómez, A. Ramos-Organillo, J. Hernández-Díaz, J. Nieto-Martínez,
R. Contreras, S.E. Castillo-Blum, Heteroat. Chem. 11 (2000) 392.
[13] W. Addison, S. Burman, C.G. Wahlgren, O.A. Rajan, T.M. Rowe, E. Sinn, J. Chem.
Soc., Dalton Trans. (1987) 2621.
[14] S. Chit Yu, S. Hou, W. Kin Chan, Macromolecules 32 (1999) 5251.
[15] D. Mishra, S. Naskar, S.K. Chattopadhyay, M. Maji, P. Sengupta, R. Dinda, S.
Ghosh, T.C.W. Mak, Transit. Met. Chem. 30 (2005) 352.
[16] M. Haga, H.-G. Hong, Y. Shiozawa, Y. Kawata, H. Monjushiro, T. Fukuo, R.
Arakawa, Inorg. Chem. 39 (2000) 4566.
[17] P. Sengupta, R. Dinda, S. Ghosh, Polyhedron 20 (2001) 3349.
[18] N. Ahmad, J.J. Levinson, S.D. Robinson, M.F. Uttely, Inorg. Synth. 15 (1974) 48.
[19] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman,
J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.1, Gaussian Inc.,
Wallingford, CT, 2009.
Acknowledgement
Calculations have been carried out in Wroclaw Centre for Net-
Appendix A. Supplementary data
[20] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[21] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[22] K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chim. Acc. 97 (1997)
119.
[23] M.E. Casida, in: J.M. Seminario (Ed.), Recent Developments and Applications of
Modern Density Functional Theory, Theoretical and Computational Chemistry,
vol. 4, Elsevier, Amsterdam, 1996, p. 391.
[24] NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.
[25] N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comp. Chem. 29 (2008) 839.
[26] CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.29.2.
[27] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl.
Crystallogr. 42 (2009) 339.
CCDC 871977 and 871976 contains the supplementary crystal-
lographic data for [RuH(CO)(bzimpy)(PPh3)2]ClÁCH3OH and [RuH
(CO)(bzimpy)(PPh3)2]ÁCH3OH complexes. These data can be ob-
ing.html, or from the Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033;
or e-mail: deposit@ccdc.cam.ac.uk.
[28] G.M. Sheldrick, Acta Cryst. A64 (2008) 112.
[29] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and
Biology, Oxford University Press, 1999.
References
[1] T.-J.J. Kinnunen, M. Haukka, E. Pesonen, T.A. Pakkanen, J. Organomet. Chem.
655 (2002) 31.