respectively (entries 5 and 6, Table 2). Finally, the optimum
reaction conditions with (S)-SunPhos were set at 70 1C and
20 bar of H2.
Org. Lett., 2005, 7, 3335; (g) P. A. Clarke, S. Santos, N. Mistry,
L. Burroughs and A. C. Humphries, Org. Lett., 2011, 13, 624.
6 (a) D. V. Patel, R. J. Schmidt and E. M. Gordon, J. Org. Chem.,
1992, 57, 7143; (b) A. M. Szpilman, D. M. Cereghetti,
J. M. Manthorpe, N. R. Wurtz and E. M. Carreira, Chem.–Eur. J.,
2009, 15, 7117; (c) K. R. Anderson, S. L. G. Atkinson, T. Fujiwara,
M. E. Giles, T. Matsumoto, E. Merifield, J. T. Singleton, T. Saito,
T. Sotoguchi, J. A. Tornos and E. L. Way, Org. Process Res. Dev.,
2010, 14, 58.
7 (a) S.-y. Tosaki, Y. Horiuchi, T. Nemoto, T. Ohshima and
M. Shibasaki, Chem.–Eur. J., 2004, 10, 1527; (b) S. Matsunaga,
T. Kinoshita, S. Okada, S. Harada and M. Shibasaki, J. Am.
Chem. Soc., 2004, 126, 7559.
Under the optimized conditions, various diethyl amides
were hydrogenated with very good ee’s (Table 3). Longer alkyl
chains decreased the ee to some extent (entry 2, Table 1 vs.
entries 1 and 2, Table 3). Bulkier substituents like tert-butyl
and cyclohexyl further impaired the enantioselectivity, the ee’s
of 4c and 4d were only 92.3% and 87.8% (entries 3 and 4,
Table 3), respectively. Trisubstituted conjugated olefin (3f) was
also tolerated under the hydrogenation conditions (entry 6,
Table 3).16 The halides on the phenyl rings had little effect on
the enantioselectivity of the reaction. Intriguingly, the intro-
duction of an ortho-methoxy (3i), which might participate in
the coordination to some degree, decreased the ee from 95.6%
to 80.7% (entry 7 vs. 9, Table 3). A similar adverse effect on
enantioselectivity from ortho-methoxy was also observed in
the Rh-catalyzed asymmetric hydrogenations of aryl-substituted
enamides.17
Based on our earlier studies15,18 we reckoned that the
hydrogenation of C3-carbonyl was directed by the amide
carbonyl, which could be validated by the absolute configu-
ration of the hydrogenation product (S)-4s (see the X-ray
crystallography data in the ESIw).
In summary, we have succeeded in the asymmetric hydro-
genation of 3,5-diketo amides with simultaneous control of
high chemo- and enantioselectivity, such precise recognition
has not been accomplished by any other chemical methods.
The excellent C3-selectivity rivalled and supplemented the
delicacy of the biocatalysis and also meet the common criterion
of high selectivity19 and atom-economy20 for efficient organic
synthesis. The resultant products furnished valuable precursors
for the stereoisomers of the 1,3-diol substructures. A more
detailed scenario of the reaction pathway and the 3,5-double
stereo control in this hydrogenation is underway.
8 (a) M. Wolberg, W. Hummel, C. Wandrey and M. Muller, Angew.
¨
Chem., Int. Ed., 2000, 39, 4306; (b) A. Liljeblad, A. Kallinen and
L. T. Kanerva, Curr. Org. Synth., 2009, 6, 362; (c) T. Matsuda,
R. Yamanaka and K. Nakamura, Tetrahedron: Asymmetry, 2009,
20, 513; (d) M. Hall and A. S. Bommarius, Chem. Rev., 2011,
111, 4088; (e) Z. Guo, Y. Chen, A. Goswami, R. L. Hanson and
R. N. Patel, Tetrahedron: Asymmetry, 2006, 17, 1589; One
excellent enzymatic reduction method of tert-butyl 3,5-dioxohexa-
note (1g), see: (f) A. Bariotaki, D. Kalaitzakis and I. Smonou, Org.
Lett., 2012, 14, 1792.
9 (a) G. B. Reddy, T. Minami, T. Hanamoto and T. Hiyama, J. Org.
Chem., 1991, 56, 5752; (b) T. Hiyama, T. Minami and
K. Takahashi, Bull. Chem. Soc. Jpn., 1995, 68, 364.
10 (a) R. Noyori and T. Ohkuma, Angew. Chem., Int. Ed., 2001,
40, 40; (b) J. P. Genet, Pure Appl. Chem., 2002, 74, 77;
(c) J. P. Genet, Acc. Chem. Res., 2003, 36, 908; (d) W. Tang and
X. Zhang, Chem. Rev., 2003, 103, 3029; (e) L. Qiu, J. Wu, S. Chan,
T. T. L. Au-Yeung, J. X. Ji, R. Guo, C. C. Pai, Z. Zhou, X. Li,
Q. H. Fan and A. S. C. Chan, Proc. Natl. Acad. Sci. U. S. A., 2004,
101, 5815; (f) N. B. Johnson, I. C. Lennon, P. H. Moran and
J. A. Ramsden, Acc. Chem. Res., 2007, 40, 1291.
11 (a) L. Shao, H. Kawano, M. Saburi and Y. Uchida, Tetrahedron,
1993, 49, 1997; (b) L. Shao, T. Seki, H. Kawano and M. Saburi,
Tetrahedron Lett., 1991, 32, 7699.
12 V. Blandin, J.-F. Carpentier and A. Mortreux, Eur. J. Org. Chem.,
1999, 3421.
13 (a) V. Blandin, J.-F. Carpentier and A. Mortreux, Eur. J. Org. Chem.,
1999, 1787; (b) G. Juszkiewicz and J. Jurczak, Org. Prep. Proced. Int.,
2002, 34, 187; (c) K. Everaere, N. Franceschini, A. Mortreux and
J.-F. Carpentier, Tetrahedron Lett., 2002, 43, 2569; (d) V. Blandin,
J.-F. Carpentier and A. Mortreux, New J. Chem., 2000, 24, 309;
(e) T. Yamagishi, in The Handbook of Homogeneous Hydrogenation,
ed. J. G. de Vries and C. J. Elsevier, Wiley-VCH, Weinheim, 2007,
p. 684; (f) D. J. Ager and S. A. Laneman, Tetrahedron: Asymmetry,
1997, 8, 3327; (g) J. Polkowska, E. Łukaszewicz, J. Kiegiel and
J. Jurczak, Tetrahedron Lett., 2004, 45, 3873.
14 (a) P. Le Gendre, M. Offenbecher, C. Bruneau and P. H. Dixneuf,
Tetrahedron: Asymmetry, 1998, 9, 2279; (b) H. L. Huang, L. T. Liu,
S. F. Chen and H. Ku, Tetrahedron: Asymmetry, 1998, 9, 1637;
(c) T. Yamano, N. Taya, M. Kawada, T. Huang and T. Imamoto,
Tetrahedron Lett., 1999, 40, 2577; (d) R. Touati, T. Gmiza,
S. Jeulin, C. Deport, V. Ratovelomanana-Vidal, B. Ben Hassine
and J.-P. Genet, Synlett, 2005, 2478; (e) R. Kramer and
Notes and references
1 (a) T. Oishi and T. Nakata, Synthesis, 1990, 635;
(b) S. D. Rychnovsky, Chem. Rev., 1995, 95, 2021; (c) A. M. P.
Koskinen and K. Karisalmi, Chem. Soc. Rev., 2005, 34, 677.
2 (a) S. J. Kulkarni, Y. Pedduri, A. G. Chittiboyina and
M. A. Avery, J. Org. Chem., 2010, 75, 3113; (b) J. Sperry, E. B. J.
Harris and M. A. Brimble, Org. Lett., 2009, 12, 420.
3 T. B. Dorff and M. E. Gross, Oncologist, 2011, 16, 1349.
4 (a) J. A. Tobert, Nat. Rev. Drug Discovery, 2003, 2, 517;
(b) M. Acemoglu, A. Brodbeck, A. Garcia, D. Grimier,
M. Hassel, B. Riss and R. Schreiber, Helv. Chim. Acta, 2007,
90, 1069; (c) D. M. Bowles, D. C. Boyles, C. Choi,
J. A. Pfefferkorn, S. Schuyler and E. J. Hessler, Org. Process
Res. Dev., 2011, 15, 148.
R. Bruckner, Angew. Chem., Int. Ed., 2007, 46, 6537;
¨
(g) V. Andrushko, N. Andrushko, G. Konig and A. Borner,
¨
(f) R. Kramer and R. Bruckner, Chem.–Eur. J., 2007, 13, 9076;
¨
¨
Tetrahedron Lett., 2008, 49, 4836.
15 W.-F. Li, X. Ma, W.-Z. Fan, X.-M. Tao, X.-M. Li, X.-M. Xie and
Z.-G. Zhang, Org. Lett., 2011, 13, 3876.
16 D. F. Taber and L. J. Silverberg, Tetrahedron Lett., 1991, 32, 4227.
17 I. D. Gridnev, M. Yasutake, N. Higashi and T. Imamoto, J. Am.
Chem. Soc., 2001, 123, 5268.
5 (a) J. E. Lynch, R. P. Volante, R. V. Wattley and I. Shinkai,
Tetrahedron Lett., 1987, 28, 1385; (b) R. A. Singer and
E. M. Carreira, J. Am. Chem. Soc., 1995, 117, 12360;
(c) J. Kruger and E. M. Carreira, J. Am. Chem. Soc., 1998,
¨
120, 837; (d) D. A. Evans, M. C. Kozlowski, J. A. Murry,
C. S. Burgey, K. R. Campos, B. T. Connell and R. J. Staples,
J. Am. Chem. Soc., 1999, 121, 669; (e) W. A. Greenberg,
A. Varvak, S. R. Hanson, K. Wong, H. Huang, P. Chen and
M. J. Burk, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5788;
(f) D. A. Evans, W. C. Trenkle, J. Zhang and J. D. Burch,
18 W.-F. Li, X.-M. Xie, X.-M. Tao, X. Ma, W.-Z. Fan, X.-M. Li and
Z.-G. Zhang, RSC Adv., 2012, 2, 3214.
19 B. M. Trost, Science, 1983, 219, 245.
20 (a) B. M. Trost, Science, 1991, 254, 1471; (b) B. M. Trost, Angew.
Chem., Int. Ed., 1995, 34, 259; (c) R. A. Sheldon, Pure Appl. Chem.,
2000, 72, 1233.
c
8978 Chem. Commun., 2012, 48, 8976–8978
This journal is The Royal Society of Chemistry 2012