124
X.-F. Zhang, W. Guo / Journal of Photochemistry and Photobiology A: Chemistry 225 (2011) 117–124
covalent bonding. The photophysical and photochemical processes
related to PDT were revealed by comparing the transient and steady
state spectra of S1, T1 and CSS with that of the free ZnPc. PET occurs
within the molecule from indole subunits to S1 of ZnPc moiety,
which is evidenced by the quenching of ˚f and ꢃf, the presence of
transient absorption bands for ZnPc•−, the emission due to CSS, the
thermodynamic and kinetic analysis. The indole conjugated ZnPc
shows unusually high yield for triplet formation because CR of CSS
(ZnPc•−–indole•+) is recombined to triplet state ZnPc(T1)–indole.
The yield for DPBF photooxidation is higher than that of ZnPc, due to
the good yield of superoxide anion radical generated by the reaction
of CSS with oxygen (which is absent for free ZnPc). Type I mecha-
nism accounts for 54% of total reaction, which is higher than 46%
by Type II reaction. These results suggest that the indole-modified
ZnPc is a better PS than the free ZnPc, but the reaction mechanism is
altered so that the importance of Type I mechanism is significantly
enhanced.
[9] J. Davila, A. Harriman, Photochem. Photobiol. 50 (1989) 29–35.
[10] W.M. Sharman, J.E. Lier v, Bioconjugate Chem. 16 (2005) 1166–1175.
[11] G. Valduga, S. Nonell, E. Reddi, G. Jori, S.E. Braslavsky, Photochem. Photobiol.
48 (1988) 1–5.
[12] R.M. Negri, A. Zalts, E.A. RomáN, P.F. AramendíA, S.E. Braslavsky, Photochem.
Photobiol. 53 (1991) 317–322.
[13] N. Cauchon, H. Tian, R. Langlois, C. La Madeleine, S. Martin, H. Ali, D. Hunting,
J.E. van Lier, Bioconjugate Chem. 16 (2005) 80–89.
[14] X.F. Zhang, H.J. Xu, J. Chem. Soc., Faraday Trans. 89 (1993) 3347–3351.
[15] C.F. Choi, P.T. Tsang, J.D. Huang, E.Y.M. Chan, W.H. Ko, W.P. Fong, D.K.P. Ng,
Chem. Commun. 2004 (2004) 2236–2237.
[16] T. Nyokong, Coord. Chem. Rev. 251 (2007) 1707–1722.
[17] S.-i. Ogura, K. Tabata, K. Fukushima, T. Kamachi, I. Okura, J. Porphyrins Phthalo-
cyanines 10 (2006) 1116–1124.
[18] D. Woehrle, O. Suvorovab, R. Gerdesa, O. Bartelsa, L. Lapoka, N. Baziakinab, S.
Makarovb, A. Slodeka, J. Porphyrins Phthalocyanines 8 (2004) 1020–1041.
[19] V. Mantareva, V. Kussovski, I. Angelov, E. Borisova, L. Avramov, G. Schnurpfeil,
D. Woehrle, Bioorg. Med. Chem. 15 (2007) 4829–4835.
[20] N. Yusuf, S.K. Katiyar, C.A. Elmets, Photochem. Photobiol. 84 (2008) 366–370.
[21] J.D. Miller, E.D. Baron, H. Scull, A. Hsia, J.C. Berlin, T. McCormick, V. Colussi, M.E.
Kenney, K.D. Cooper, Toxicol. Appl. Pharmacol. 224 (2007) 290–299.
[22] M. Montalti, A. Credi, L. Prodi, M.T. Gandolfi, Photophysical properties of organic
compounds, in: Handbook of Photochemistry, Taylor & Francis Group, LLC,
London, 2006, 255.
[23] K. Ishii, N. Kobayashi, The photophysical properties of phthalocyanines and
related compounds, in: K.M. Kadish, K.M. Smith, R. Guilard (Eds.), The Porphyrin
Handbook, vol. 16, Academic Press, New York, Amsterdam, 2003, pp. 1–42.
[24] I. Carmichael, G.L. Hug, J. Phys. Chem. Ref. Data 15 (1986) 1–250.
[25] M.G. Lagorio, L.E. Dicelio, E.A.S. Roman, S.E. Braslavsky, J. Photochem. Photobiol.
B 3 (1989) 615–624.
Acknowledgements
This work has been supported by Hebei Provincial Science Foun-
dation (Contract B2010001518) and HBUST.
[26] N. Kuznetsova, N. Gretsova, E. Kalmykova, E. Makarova, S. Dashkevich, V. Neg-
rimovskii, O. Kaliya, E. Luk’yanets, Russ. J. Gen. Chem. 70 (2000) 133–139.
[27] N.B. McKeown, The synthesis of symmetrical phthalocyanines, in: K.M. Kadish,
K.M. Smith, R. Guilard (Eds.), The Porphyrin Handbook, vol. 15, Academic Press,
New York, 2003, p. 61.
[28] X.-F. Zhang, Y. Chang, Y. Peng, F. Zhang, Aust. J. Chem. 62 (2009) 434–440.
[29] X.F. Zhang, J. Huang, H. Zhao, X. Zheng, Z. Junzhong, J. Photochem. Photobiol.
A: Chem. 215 (2010) 96–102.
[30] X.F. Zhang, H.J. Xu, D.W. Chen, J. Photochem. Photobiol. B: Biol. 22 (1994)
235–239.
[31] Y.A. Udum, M. Düdükcüa, F. Kölelia, React. Funct. Polym. 68 (2008) 861–867.
[32] M. L’her, A. Pondaven, Electrochemistry of Phthalocyanines, in: K.M.S.K.M.
Kadish, R. Guilard (Eds.), The Porphyrin Handbook, Academic Press, San Diego,
2003, pp. 117–170.
References
[1] C.A. Robertson, D.H. Evans, H. Abrahamse, J. Photochem. Photobiol. B 96 (2009)
1–8.
[2] N.V. Kudinova, T.T. Berezov, Biochem. (Moscow) Suppl. Ser. B: Biomed. Chem.
4 (2010) 95–103.
[3] K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich, Lasers Med. Sci. 24
(2009) 259–268.
[4] J.J. Lopez, M.A.G. Carter, Y.P. Tsentalovich, O.B. Morozova, A.V. Yurkovskaya, P.J.
Hore, Photochem. Photobiol. 75 (2002) 6–10.
[5] X.-F. Zhang, H. Xu, T. Shen, Sci. China B 38 (1995) 641–648.
[6] G. Ferraudi, G.A. Arguello, H. Ali, J.E. Lier, Photochem. Photobiol. 47 (1988)
657–660.
[7] X.F. Zhang, H.J. Xu, J. Photochem. Photobiol. B 24 (1994) 109–116.
[8] A. Segalla, C.D. Borsarelli, S.E. Braslavsky, J.D. Spikes, G. Roncucci, D. Dei, G. Chiti,
G. Jori, E. Reddi, Photochem. Photobiol. Sci 1 (2002) 641–648.
[33] T. Ohyashiki, M. Nunomura, T. Katoh, Biochim. Biophys. Acta (BBA): Biomem.
1421 (1999) 131–139.