central glucosamine residue.19 Due to the low catalytic activity
of the enzyme complete de-N-acetylation was not achieved and a
mixture of the starting material and the mono-de-N-acetylated
pentasaccharide was carried forward to the acylation step. Acyla-
tion with S-octanoylthioglycolate N-hydroxysuccinamide ester
provided a product which could be readily separated from the
fully acetylated pentasaccharide by RP-HPLC. The octanoyl
thioester could be cleaved under basic conditions and the free
octanoic acid removed by acidic extraction (Scheme 4).
Analysis of the inhibition of compound 32, after reduction of
the disulfide bond, against PgaB was determined using the same
protocol as described for the monosaccharide inhibitors. The
pentasaccharide 32 showed a two-fold increase in inhibitory
(Ki = 280 μM) activity over compound 8. A greater gain in
affinity was expected given the observed improvement in sub-
strate turnover by PgaB on larger PNAG oligomers. Further
work is required to discern the binding mode of compounds 8
and 32 to the enzyme to explain this result with confidence.
Likely the optimal binding orientation of the thioglycolyl amide
8 is different from the orientation of a monosaccharide within a
larger oligomer.
7 D. McKenney, K. L. Pouliot, Y. Wang, V. Murthy, M. Ulrich, G. Doring,
J. C. Lee, D. A. Goldmann and G. B. Pier, Science, 1999, 284, 1523–
1527.
8 X. Wang, J. F. Preston and T. Romeo, J. Bacteriol., 2004, 186, 2724–
2734.
9 T. Maira-Litran, A. H. K. Choi, L. Slamti, F. Y. Avci and G. B. Pier,
J. Bacteriol., 2009, 191, 5953–5963.
10 G. P. Sloan, C. F. Love, N. Sukurnar, M. Mishra and R. Deora, J. Bacter-
iol., 2007, 189, 8270–8276.
11 R. Deora, M. S. Conover, G. P. Sloan, C. F. Love and N. Sukumar, Mol.
Microbiol., 2010, 77, 1439–1455.
12 E. A. Izano, I. Sadovskaya, E. Vinogradov, M. H. Mulks,
K. Velllyagounder, C. Ragunath, W. B. Kher, N. Ramasubbu, S. Jabbouri,
M. B. Perry and J. B. Kaplan, Microb. Pathog., 2007, 43, 1–9.
13 N. Yakandawala, P. V. Gawande, K. LoVetri, S. T. Cardona, T. Romeo,
M. Nitz and S. Madhyastha, Appl. Environ. Microbiol., 2011, 77, 8303–
8309.
14 B. J. Hinnebusch, C. O. Jarrett, E. Deak, K. E. Isherwood, P. C. Oyston,
E. R. Fischer, A. R. Whitney, S. D. Kobayashi and F. R. DeLeo, J. Infect.
Dis., 2004, 190, 783–792.
15 C. Vuong, J. M. Voyich, E. R. Fischer, K. R. Braughton, A. R. Whitney,
F. R. DeLeo and M. Otto, Cell. Microbiol., 2004, 6, 269–275.
16 C. Vuong, S. Kocianova, J. M. Voyich, Y. F. Yao, E. R. Fischer,
F. R. DeLeo and M. Otto, J. Biol. Chem., 2004, 279, 54881–54886.
17 Y. Itoh, J. D. Rice, C. Goller, A. Pannuri, J. Taylor, J. Meisner,
T. J. Beveridge, J. F. Preston and T. Romeo, J. Bacteriol., 2008, 190,
3670–3680.
18 B. Henrissat, B. L. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard and
V. Lombard, Nucleic Acids Res., 2009, 37, D233–D238.
19 D. J. Little, J. Poloczek, J. C. Whitney, H. Robinson, M. Nitz and P.
L. Howell, J. Biol. Chem., 2012, DOI: 10.1074/jbc.M112.390005, in press.
20 D. J. Little, J. C. Whitney, H. Robinson, P. Yip, M. Nitz and P. L. Howell,
Acta Crystallogr., 2012, F68, 842–845.
21 D. E. Blair, O. Hekmat, A. W. Schuttelkopf, B. Shrestha, K. Tokuyasu, S.
G. Withers and D. M. F. van Aalten, Biochemistry, 2006, 45, 9416–9426.
22 D. E. Blair, A. W. Schuttelkopf, J. I. MacRae and D. M. F. van Aalten,
Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 15429–15434.
23 F. Caturla, J. Enjo, M. C. Bernabeu and S. Le Serre, Tetrahedron, 2004,
60, 1903–1911.
24 E. Koller and O. S. Wolfbeis, Monatsh. Chem., 1985, 116, 65–75.
25 M. Rouffet and S. M. Cohen, Dalton Trans., 2011, 40, 3445–3454.
26 P. Bertrand, Eur. J. Med. Chem., 2010, 45, 2095–2116.
27 N. K. Bui, S. Turk, S. Buckenmaier, F. Stevenson-Jones, B. Zeuch,
S. Gobec and W. Vollmer, Biochem. Pharmacol., 2011, 82, 43–52.
28 N. Z. Abelwahab, A. T. Crossman, L. Sullivan, M. A. J. Ferguson and M.
A. Urbaniak, Chem. Biol. Drug Des., 2012, 79, 270–278.
29 J. E. Jackman, C. A. Fierke, L. N. Tumey, M. Pirrung, T. Uchiyama, S.
H. Tahir, O. Hindsgaul and C. R. H. Raetz, J. Biol. Chem., 2000, 275,
11002–11009.
Conclusion
In conclusion, we have synthesized a series of glucosamine
derivatives bearing potential metal chelating groups as inhibitors
against PgaB. N-Methylated chelators showed consistently stron-
ger inhibition than their primary amide counterparts, yielding
high micromolar inhibitors. Using a chemoenzymatic synthesis it
was possible to generate a thioglycolyl amide functionalized
pentasaccharide inhibitor with a Ki value of 280 μM against
PgaB. Not surprisingly preliminary biofilm inhibition assays
with S. epidermidis 1457 using compounds 8, 20, 24, at a con-
centration of 1 mM, showed no inhibition likely due to the weak
activity of these compounds.
Acknowledgements
30 C. Campestre, M. Agamennone, P. Tortorella, S. Preziuso, A. Biasone,
E. Gavuzzo, G. Pochetti, F. Mazza, O. Hiller, H. Tschesche, V. Consalvi
and C. Gallina, Bioorg. Med. Chem. Lett., 2006, 16, 20–24.
31 A. V. Gudmundsdottir and M. Nitz, Carbohydr. Res., 2007, 342, 749–752.
32 U. J. Nilsson, E. J. L. Fournier and O. Hindsgaul, Bioorg. Med. Chem.,
1998, 6, 1563–1575.
33 D. A. Parrish, Z. Zou, C. L. Allen, C. S. Day and S. B. King, Tetrahedron
Lett., 2005, 46, 8841–8843.
34 J. Agarwal and R. K. Peddinti, J. Org. Chem., 2011, 76, 3502–3505.
35 P. Fowler, B. Bernet and A. Vasella, Helv. Chim. Acta, 1996, 79, 269–287.
36 J. C. Zhang and M. D. Matteucci, Bioorg. Med. Chem. Lett., 1999, 9,
2213–2216.
37 T. Suzuki, Y. Nagano, A. Kouketsu, A. Matsuura, S. Maruyama,
M. Kurotaki, H. Nakagawa and N. Miyata, J. Med. Chem., 2005, 48,
1019–1032.
38 S. Manku, M. Allan, N. Nguyen, A. Ajamian, J. Rodrigue, E. Therrien,
J. Wang, T. Guo, J. Rahil, A. J. Petschner, A. Nicolescu, S. Lefebvre,
Z. Li, M. Fournel, J. M. Besterman, R. Deziel and A. Wahhab, Bioorg.
Med. Chem. Lett., 2009, 19, 1866–1870.
This work is supported by research grants from the Canadian
Institutes of Health Research (CIHR) (#43998 and #89708 to
P.L.H. and M.N., respectively). A.C., J.P. and D.J.L. have been
supported by graduate scholarships from the University of
Toronto. P.L.H. is the recipient of
a Canada Research
Chair. M. Otto and colleagues are acknowledged for their help in
preliminary biofilm assays.
Notes and references
1 C. Potera, Science, 1999, 283, 1837–1839.
2 L. Hall-Stoodley, J. W. Costerton and P. Stoodley, Nat. Rev. Microbiol.,
2004, 2, 95–108.
3 J. W. Costerton, P. S. Stewart and E. P. Greenberg, Science, 1999, 284,
1318–1322.
4 I. W. Sutherland, Microbiol. U.K., 2001, 147, 3–9.
5 E. P. Ivanova, B. Vu, M. Chen and R. J. Crawford, Molecules, 2009, 14,
2535–2554.
39 X. S. Hu, W. H. Zhang, I. Carmichael and A. S. Serianni, J. Am. Chem.
Soc., 2010, 132, 4641–4652.
6 D. Mack, W. Fischer, A. Krokotsch, K. Leopold, R. Hartmann, H. Egge
and R. Laufs, J. Bacteriol., 1996, 178, 175–183.
40 C. Leung, A. Chibba, R. F. Gomez-Biagi and M. Nitz, Carbohydr. Res.,
2009, 344, 570–575.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 7103–7107 | 7107