PAPER
Synthesis of Cyanoacetyl Oxazolidinones
1995
(20 mL), dried (Na2SO4), and concentrated onto silica gel for silica
gel chromatography (Combiflash, 12 g cartridge, flow rate 30
mL/min, gradient 0–100% EtOAc in heptane over 15 min) to afford
80 mg (53%) of 1c as a colorless solid.
pale yellow oil, which on trituration with Et2O provided a pale yel-
low solid; mp 125 °C; [α]D23 –61.3 (c 1.3, CHCl3).
IR (KBr): 2227 cm–1.
1H NMR (CDCl3): δ = 7.97 (d, J = 2.0 Hz, 1 H), 7.86 (dd, J = 8.4,
2.0 Hz, 1 H), 7.67 (s, 1 H), 7.57 (d, J = 8.4 Hz, 1 H), 7.40–7.28 (m,
3 H), 7.22 (d, J = 7.1 Hz, 2 H), 4.76 (m, 1 H), 4.36 (t, J = 8.5 Hz, 1
H), 4.26 (dd, J = 9.1, 5.3 Hz, 1 H), 3.42 (dd, J = 13.5, 3.7 Hz, 1 H),
2.90 (dd, J = 13.5, 9.2 Hz, 1 H).
13C NMR (CDCl3): δ = 162.9, 152.8, 150.3, 137.4, 134.4, 133.8,
132.4, 131.5, 131.3, 129.4, 129.2, 129.2, 127.7, 114.2, 108.5, 67.3,
55.9, 37.4.
3-[(4R,5S)-4-Methyl-2-oxo-5-phenyloxazolidin-3-yl]-3-oxopro-
panenitrile (1a)
Prepared from (4R,5S)-3-(2-chloroacetyl)-4-methyl-5-phenyloxa-
zolidin-2-one (3a)14 using method B to yield 0.12 g (57%) as a col-
orless solid; mp 174 °C; [α]D23 +11.0 (c 1.1, DMSO).
IR (KBr): 2261 cm–1.
1H NMR (DMSO-d6): δ = 7.42 (m, 5 H), 5.87 (d, J = 7.6 Hz, 1 H),
4.84 (m, 1 H), 4.43 (q, J = 19.8 Hz, 2 H), 0.78 (d, J = 6.6 Hz, 3 H).
Anal. Calcd for C20H14Cl2N2O3: C, 59.87; H, 3.52; N, 6.98. Found:
C, 59.76; H, 3.32; N, 6.88.
13C NMR (CDCl3): δ = 161.6, 152.7, 132.4, 129.2, 128.9, 125.6,
112.8, 79.8, 55.3, 27.4, 14.4.
(E)-3-(3,4-Ddichlorophenyl)-2-[(4R,5S)-4-methyl-2-oxo-5-
phenyloxazolidine-3-carbonyl]acrylonitrile (2a)
Prepared from 1a to yield 26 mg (31%) as a colorless solid; mp 144
°C; [α]D23 +73.5 (c 1.4, CHCl3).
HRMS: m/z calcd for C13H12N2O3 + Na: 267.0746; found:
267.0751.
(R)-3-[4-Benzyl-2-oxooxazolidin-3-yl]-3-oxopropanenitrile (1b)
Prepared from (R)-4-benzyl-3-(2-chloroacetyl)oxazolidin-2-one
(3b)6 using method B to yield 0.14 g (59%) as a colorless solid; mp
140 °C; [α]D23 –61.8 (c 1.0, CHCl3).
IR (KBr): 2216 cm–1.
1H NMR (DMSO-d6): δ = 7.98 (s, 1 H), 7.88 (d, J = 8.4 Hz, 1 H),
7.71 (s, 1 H), 7.58 (d, J = 8.4 Hz, 1 H), 7.43 (m, 3 H), 7.32 (d, J =
7.4 Hz, 2 H), 5.79 (d, J = 7.4 Hz, 1 H), 4.79 (pent, J = 6.7 Hz, 1 H),
1.04 (d, J = 6.5 Hz, 3 H).
13C NMR (CDCl3): δ = 162.7, 152.5, 150.2, 137.3, 133.8, 132.9,
132.4, 131.5, 131.3, 129.3, 129.1, 128.9, 126.0, 114.3, 108.7, 80.2,
56.1, 14.4.
IR (KBr): 2266 cm–1.
1H NMR (CDCl3): δ = 7.33 (m, 3 H), 7.20 (d, J = 7.0 Hz, 2 H), 4.72
(m, 1 H), 4.28 (m, 1 H), 4.14 (m, 1 H), 3.34 (dd, J = 13.5, 3.2 Hz, 1
H), 2.83 (dd, J = 13.5, 9.5 Hz, 1 H).
13C NMR (CDCl3): δ = 161.9, 153.1, 134.4, 129.4, 129.2, 127.8,
112.8, 66.9, 55.4, 37.6, 27.3.
Anal. Calcd for C20H14Cl2N2O3: C, 59.87; H, 3.52; N, 6.98. Found:
C, 59.71; H, 3.26; N, 6.92.
HRMS: m/z calcd for C13H12N2O3: 245.0926; found: 245.1380.
(R)-3-Oxo-3-(2-oxo-4-phenyloxazolidin-3-yl)propanenitrile
(1d)
Acknowledgment
Prepared from (R)-3-(2-chloroacetyl)-4-phenyloxazolidin-2-one
(3d)15 using method B, modified using a chromatography gradient
of 0–20% EtOAc in CH2Cl2 to yield 0.11 g (57%) as a colorless sol-
id, mp 206 °C; [α]D23 –152 (c 1.0, DMSO).
The authors wish to thank Baiwei Lin, Deven Wang, and WuXi
AppTec, Co. for assisting with compound characterization, and
Bryan Chan for critical review of the manuscript.
IR (KBr): 2261 cm–1.
Supporting Information for this article is available online at
are copies of 1H and 13C NMR spectra of compounds 1a, 1b, 1c, 1d,
1H NMR (DMSO-d6): δ = 7.36 (m, 5 H), 5.48 (dd, J = 8.7, 3.8 Hz,
1 H), 4.77 (t, J = 8.8 Hz, 1 H), 4.56 (d, J = 19.9 Hz, 1 H), 4.38 (d,
J = 19.9 Hz, 1 H), 4.23 (dd, J = 8.9, 3.9 Hz, 1 H).
2a, 2b, and 4a.SnoIufproig
m
iotSrat
nugIiofop
r
t
13C NMR (DMSO-d6): δ = 163.0, 153.4, 139.0, 128.8, 128.2, 125.9,
114.9, 70.7, 57.1, 27.4.
References
HRMS: m/z calcd for C12H10N2O3: 231.0770; found: 231.0753.
(1) Thorsen, T. S.; Madsen, K. L.; Rebola, N.; Rathje, M.;
Anggono, V.; Bach, A.; Moreira, I. S.; Stuhr-Hansen, N.;
Dyhring, T.; Peters, D.; Beuming, T.; Huganir, R.;
Weinstein, H.; Mulle, C.; Stromgaard, K.; Ronn, L. C. B.;
Gether, U. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 413.
(2) Bach, A.; Stuhr-Hansen, N.; Thorsen, T. S.; Bork, N.;
Moreira, I. S.; Frydenvang, K.; Padrah, S.; Christensen, S.
B.; Madsen, K. L.; Weinstein, H.; Gether, U.; Strømgaard,
K. Org. Biomol. Chem. 2010, 8, 4281.
(3) Lin, J.; Huang, C.; Yan, S.; Ni, Y.; Huang, R.; Chen, B.
Chinese Patent CN 2008-10233712, 2, 2008; Chem. Abstr.
2009, 151, 148317 (Patent written in Chinese). No
experimentals for preparing compounds of type 2 were
provided.
(4) Schwarz, J. B.; Gibbons, S. E.; Graham, S. R.; Colbry, N. L.;
Guzzo, P. R.; Le, V.-D.; Vartanian, M. G.; Kinsora, J. J.;
Lotarski, S. M.; Li, Z.; Dickerson, M. R.; Su, T.-Z.; Weber,
M. L.; El-Kattan, A.; Thorpe, A. J.; Donevan, S. D.; Taylor,
C. P.; Wustrow, D. J. J. Med. Chem. 2005, 48, 3026.
(5) Patel, N.; Schwarz, J. B.; Islam, K.; Miller, W.; Tran, T. P.;
Wei, Y. Synth. Commun. 2011, 41, 2209.
4-[(4R,5S)-4-Methyl-2-oxo-5-phenyloxazolidin-3-yl]-2-
[(4R,5S)-4-methyl-2-oxo-5-phenyloxazolidine-3-carbonyl]-4-
oxobutanenitrile (4a)
Obtained from HPLC purification of 1a, prepared using method A,
to yield 40 mg (4%) as a 55:45 mixture of diastereomers.
1H NMR (CDCl3): δ = 7.43 (m, 10 H), 5.93 (m, 2 H), 5.21 (m, 1 H),
4.88 (m, 2 H), 3.63 (m, 2 H), 0.77 (m, 6 H).
HRMS: m/z calcd for C25H23N3O6 + Na: 484.1485; found:
484.1519.
Knoevenagel Condensation of 3,4-Dichlorobenzaldehyde with
1; (R,E)-2-(4-Benzyl-2-oxooxazolidine-3-carbonyl)-3-(3,4-di-
chlorophenyl)acrylonitrile (2b); Typical Procedure
To a mixture of 3,4-dichlorobenzaldehyde (43 mg, 0.25 mmol), 1b
(72 mg, 0.29 mmol), and NH4OAc (39 mg, 0.49 mmol) in CHCl3 (5
mL) was added glacial AcOH (2 drops), and the reaction mixture
was heated at 80 °C overnight resulting in complete evaporation of
solvent. The residue was cooled, dissolved in CH2Cl2 (10 mL), and
concentrated onto silica gel. Silica gel chromatography (Combifla-
sh, 12 g silica cartridge, flow rate 30 mL/min, gradient 0–100%
EtOAc in heptane over 15 min) afforded 52 mg (53%) of 2b as a
© Georg Thieme Verlag Stuttgart · New York
Synthesis 2012, 44, 1993–1996