D
P. Yuan et al.
Cluster
Synlett
Table 2 Correlation of Electron Density of the β-Carbon with the Se-
lectivity
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
R
R
4a (10 mol%)
SBn
O
O
LiHMDS (10 mol%)
+
O
BnSH
O
4 Å MS, toluene, –78 °C
References and Notes
1a
2
3
(1) For comprehensive overviews on NHC-catalyzed reactions, see:
(a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107,
5606. (b) Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.;
Jose, A.; Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336.
(c) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511.
(d) Grossmann, A.; Enders, D. Angew. Chem. Int. Ed. 2012, 51,
314. (e) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A.
Angew. Chem. Int. Ed. 2012, 51, 11686. (f) Vora, H. U.; Wheeler,
P.; Rovis, T. Adv. Synth. Catal. 2012, 354, 1617. (g) Sarkar, S. D.;
Biswas, A.; Samanta, R. C.; Studer, A. Chem. Eur. J. 2013, 19,
4664. (h) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.;
Rovis, T. Chem. Rev. 2015, 115, 9307.
(2) For a recent review on acyl anion free reactions, see: (a) Ryan, S.
J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906. For
representative examples, see: (b) Sun, X.; Ye, S.; Wu, J. Eur. J.
Org. Chem. 2006, 4787. Selected examples for halide: (c) Ryan, S.
J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2011, 133, 4694.
(d) Ryan, S. J.; Stasch, A.; Paddon-Row, M. N.; Lupton, D. W.
J. Org. Chem. 2012, 77, 1113. (e) Candish, L.; Lupton, D. W.
J. Am. Chem. Soc. 2013, 135, 58. (f) Zhang, Y. R.; He, L.; Wu, X.;
Shao, P. L.; Ye, S. Org. Lett. 2008, 10, 277. (g) Huang, X. L.; He, L.;
Shao, P. L.; Ye, S. Angew. Chem. Int. Ed. 2009, 48, 192. (h) Zhang,
H. M.; Gao, Z. H.; Ye, S. Org. Lett. 2014, 16, 3079. (i) Hao, L.; Du,
Y.; Lv, H.; Chen, X.; Jiang, H.; Shao, Y.; Chi, Y. R. Org. Lett. 2012,
14, 2154. (j) Cheng, J.; Huang, Z.; Chi, Y. R. Angew. Chem. Int. Ed.
2013, 52, 8592. (k) Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W.; Chi, Y. R.
Nat. Chem. 2013, 5, 835. (l) Chauhan, P.; Enders, D. Angew. Chem.
Int. Ed. 2014, 53, 1485.
Entry
R
13C NMR δ of the β-carbon er
(ppm)
log (er)
1
2
3
4
5
6
7
8
2k OMe
2a H
146.80
147.04
147.36
147.62
147.65
147.83
148.10
148.87
78:22
0.550
0.771
0.720
0.807
0.841
0.792
0.931
0.886
85.5:14.5
84:16
2e F
2f Cl
86.5:13.5
87.5:12.5
86:14
2h Br
2d CO2Et
2b CF3
89.5:10.5
88.5:11.5
2c NO2
ArO2C
H
R2
S
Me
R1
H
N
N
N
O
Me
Me
SR1
O
(S)
R2
OAr
Scheme 4 Proposed transition state
(3) (a) Kim, Y.-J.; Streitwieser, A. J. Am. Chem. Soc. 2002, 124, 5757.
(b) Amyes, T. L.; Diver, S. T.; Richard, J. P.; Rivas, F. M.; Toth, K.
J. Am. Chem. Soc. 2004, 126, 4366. (c) Massey, R. S.; Collett, C. J.;
Lindsay, A. G.; Smith, A. D.; O’Donoghue, A. C. J. Am. Chem. Soc.
2012, 134, 20421. Selected examples for utilizing NHC as
chiral Brønsted base: (d) Phillips, E. M.; Riedrich, M.; Scheidt,
K. A. J. Am. Chem. Soc. 2010, 132, 13179. (e) Boddaert, T.;
Coquerel, Y.; Rodriguez, J. Chem. Eur. J. 2011, 17, 2266.
(4) (a) Chen, J.; Huang, Y. Nat. Commun. 2014, 5, 3437. (b) Chen, J.;
Meng, S.; Wang, L.; Tang, H.; Huang, Y. Chem. Sci. 2015, 6, 4184.
(c) Wang, L.; Chen, J.; Huang, Y. Angew. Chem. Int. Ed. 2015, 54,
15414.
(5) (a) Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K. J. Am. Chem.
Soc. 1997, 119, 12974. (b) Emori, E.; Arai, T.; Sasai, H.; Shibasaki,
M. J. Am. Chem. Soc. 1998, 120, 4043. (c) Leow, D.; Lin, S.;
Chittimalla, S. K.; Fu, X.; Tan, C. H. Angew. Chem. Int. Ed. 2008,
47, 5641. (d) Wang, R.; Liu, J.; Xu, J. Adv. Synth. Catal. 2015, 357,
159.
configuration by comparing to literature reported optical
rotation values.6b,d
In summary, the recently unlocked noncovalent cataly-
sis mode for chiral NHC was investigated in asymmetric sul-
fa-Michael addition reactions using less reactive α,β-unsat-
urated esters and amides.8 β-Benzylthio esters were syn-
thesized in good yield and moderate to good
enantioselectivity. In contrast to nitroolefins, more reactive
ester/amide substrates yielded higher selectivity and no ex-
ternal proton shuttle is required for catalyst turnover. We
expect NHC will be more intensively studied as a powerful
noncovalent organocatalysts in the near future.
Acknowledgment
(6) Selected papers for sulfa-Michael reactions of oxazolidinone
derivatives: (a) Kanemasa, S.; Oderaotoshi, Y.; Wada, E. J. Am.
Chem. Soc. 1999, 121, 8675. (b) Abe, A. M.; Sauerland, S. J.;
Koskinen, A. M. J. Org. Chem. 2007, 72, 5411. (c) Zu, L.; Wang, J.;
Li, H.; Xie, H.; Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129,
1036. (d) Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng, L. J. Am.
Chem. Soc. 2009, 131, 418. (e) Dai, L.; Yang, H.; Chen, F. Eur. J.
Org. Chem. 2011, 5071. (f) Chen, W.; Jing, Z.; Chin, K. F.; Qiao, B.;
Zhao, Y.; Yan, L.; Tan, C.-H.; Jiang, Z. Adv. Synth. Catal. 2014, 356,
This work is financially supported by the National Natural Science
Foundation of China (21372013, 21572004), the Shenzhen Peacock
Program (KQTD201103) and the Disciplinary Development Program
for Chemical Biology by the Shenzhen Municipal Development and
Reform Commission.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–E