5502
B. Dar et al. / Tetrahedron Letters 53 (2012) 5497–5502
Figure 1. Effect of reaction time on the yield of 4b.
11. (a) Yokomatsu, T.; Yoshida, Y.; Shibuya, S. J. Org. Chem. 1994, 59, 7930; (b)
In all cases, the experimental results show that the reaction
Yokomatsu, T.; Yoshida, Y.; Shibuya, S. J. Org. Chem. 1994, 59, 7930.
12. Yadav, J. S.; Reddy, B. V. S.; Raj, K. S.; Reddy, K. B.; Prasad, A. R. Synthesis 2001,
2277.
13. Ha, H. J.; Nam, G. S. Synth. Commun. 1992, 22, 1143.
14. Zon, J. Pol. J. Chem. 1981, 55, 643.
times are reduced and the yields of the products are increased un-
der sonication without using any catalyst. Based on the results of
this study, it seems that the ultrasound irradiations are sufficient
to draw this reaction in the absence of any catalyst with decreased
15. (a) Rao, K. U. M.; Jayaprakash, S. H.; Nayak, S. K.; Reddy, C. S. Catal. Sci. Technol.
2011, 1, 1665; (b) Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.;
Narsihmulu, C. Tetrahedron Lett. 2001, 42, 5561.
16. Hou, J. T.; Gao, J. W.; Zhang, Z. H. Appl. Organometal. Chem. 2011, 25, 47.
17. Vinu, A.; Kalita, P.; Balasubramanian, V. V.; Oveisi, H.; Selvan, T.; Mano, A.;
Chari, M. A.; Reddy, B. V. S. Tetrahedron Lett. 2009, 50, 7132.
18. Yang, J. J.; Dang, N.; Chang, Y. W. Lett. Org. Chem. 2009, 6, 470.
19. Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Heydari, R.; Hazeri, N.;
Sajadikhah, S. S.; Rostamizadeh, M. Chin. J. Chem. 2010, 28, 285.
20. Sobhani, S.; Tashrifi, Z. Heteroat. Chem. 2009, 20, 109.
21. Jafari, A. A.; Nazarpour, M.; Abdollahi-Alibeik, M. Heteroat. Chem. 2010, 21, 6.
22. Reddy, M. V.; Dindulkar, S. D.; Jeong, Y. T. Tetrahedron Lett. 2011, 52, 4764.
23. de-Noronha, R. G.; Romão, C. C.; Fernandes, A. C. Catal. Commun. 2011, 12, 337.
24. Disale, S. T.; Sandip, R. K.; Kahandal, S. S.; Srinivasan, T. G.; Jayaram, R. V.
Tetrahedron Lett. 2012, 53, 2277.
reaction times and improved yields of
Though the protocol is general but is not universal, because the
-aminophosphonates obtained from corresponding ketones were
a-aminophosphonates.
a
very less in yield under these conditions. When aldehydes were re-
placed with ketones the yields were found to be very less even
after 4–5 h (Table 3, entry 18–20). Here the products from aceto-
phenone and cyclohexanone were obtained in traces, acetone
shows no reaction.
In conclusion we report an ultrasound promoted, catalyst free
and solvent-free efficient, convenient, methodology for the synthe-
sis of
a-aminophosphonates with short reaction time, good to
25. Dindulkar, S. D.; Reddy, M. V.; Jeong, Y. T. Catal. Commun. 2012, 17, 114.
26. Reddy, B. V. S.; Krishna, A. S.; Ganesh, A. V.; Kumar, G. G. K. S. N. Tetrahedron
Lett. 2011, 52, 1359.
excellent yields, and high selectivity.
27. (a) Juarez, R.; Concepcion, P.; Corma, A.; Garcia, H. Chem. Commun. 2010, 46,
4181; (b) Juarez, R.; Corma, A.; Garcia, H. Green Chem. 2009, 11, 949.
28. (a) Gallardo-Macias, R.; Nakayama, K. Synthesis 2010, 1, 57; (b) Heydari, A.;
Hamadi, H.; Pourayoubi, M. Catal. Commun. 2007, 8, 1224.
29. (a) Shinde, P. V.; Kategaonkar, A. H.; Shingate, B. B.; Shingare, M. S. Tetrahedron
Lett. 2011, 52, 2889; (b) Rasheed, S.; Venkataramana, K.; Chandrasekhar, K.;
Fareeda, G.; Raju, C. N. Arch. Pharm. Chem. Life Sci. 2012, 345, 294; (c) Agawane,
S. M.; Nagarkar, J. M. Tetrahedron Lett. 2011, 52, 3499.
Acknowledgements
We are grateful to the authorities of M/S Indian Institute of Inte-
grated Medicine (IIIM), canal road, Jammu for providing necessary
facilities and good environment to carry out the research work. We
are also thankful to CSRI-DELHI for the financial support.
30. Typical procedure for one-pot synthesis of a-aminophosphonates: A mixture of an
aniline (1 mmol) and an aldehyde (1 mmol) was taken with triethylphosphite
(1.3 mmol) in a 5 ml glass test tube (Scheme 1) with total reaction volume 0.4–
0.5 ml approximately. The reaction mixture was placed at room temperature for
specified time under ultrasonic irradiation, performed in a Bandelin Sonorex
References and notes
1. Moonen, K.; Laureyn, I.; Stevens, C. V. Chem. Rev. 2004, 104, 6177.
2. Craig, J. C.; Person, P. E. J. Med. Chem. 1971, 14, 1221.
3. Sukhova, N. M.; Lidak, M.; Zidermane, A.; Pelevina, I. S.; Voronia, S. S. Khim.-
Farm. Zh. 1989, 23, 1226.
4. Patel, H. V.; Vyas, K. V.; Fernandes, P. S. Indian J. Chem. 1990, 29(B), 836.
5. Atherton, F. R.; Hassal, C. H.; Lambert, R. W. J. Med. Chem. 1986, 29, 29.
6. Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. J. Med. Chem. 1989, 32,
1652.
Super RK 510
H
ultrasonic bath with Inner tank dimensions l  w  d:
300  240  150 mm, Exterior dimensions l  w  h: 325  265  305 mm,
Frequency: 35 kHz and Ultrasonic peak output: 640 W⁄. Progress of the reaction
was monitored by TLC (silica gel) using ethyl acetate–hexane as eluent. After
completion of the reaction (as indicated by TLC), the mixture was quenched
with water and extracted with ethyl acetate, dried (MgSO4) then concentrated
under reduced pressure to afford the crude product. The crude product thus
obtained was purified by the process of crystallization and the spectral data (1H,
13C NMR, HRMS, IR) were obtained and analyzed after comparison with the
authentic samples. 1H, 13C NMR of some representative compounds are
provided in supplementary information.
7. Natchev, I. A. Liebigs Ann. Chem. 1988, 861.
8. Kafarski, P.; Lejczak, B. Phosphorus Sulfur Silicon Rel. 1991, 63, 193.
9. Chen, R. Y.; Mao, L. J. Phosphorus Sulfur Silicon Rel. 1994, 89, 97.
10. Maier, L. Phosphorus Sulfur Silicon Rel. 1990, 53, 43–67.