Medicinal Chemistry Communications
Page 6 of 8
DOI: 10.1039/C4MD00041B
† Electronic Supplementary Information (ESI) available: [Experimental
procedures, spectral data, HPLC chromatogarms, and details of biological
assay]. See DOI: 10.1039/b000000x/
imparted by the 4ꢀtertbutylphenyl among all the incorporated aryl
groups at the Cꢀ2 position of ꢀhistidine. From the results, it can
L
be concluded that among the biaryl groups (biphenyl and
naphthyl), biphenyl imparts more hydrophobicity as compared to
naphthyl group. In conclusion, peptide 5e being most
hydrophobic in nature displays highest activity with IC50 value of
0.16 µg/mL against C. neoformans and the results are in good
correlation.
45
50
1. D. M. Dixon, M. M. McNeil, M. L. Cohen, B. G. Gellin and J.
R. La Montagne, Public Health Rep., 1996, 111, 226ꢀ235.
2. M. D. Richardson, J. Antimicrob. Chemother., 1991, 28, 1ꢀ11.
3. R. S. Geha, L. D. Notarangelo, J.ꢀL. Casanova, H. Chapel, M.
E. Conley, A. Fischer, L. HammarstrÖm, S. Nonoyama, H. D.
Ochs and J. M. Puck, J. Allergy Clin. Immunol., 2007, 120,
776ꢀ794.
5
4. C.ꢀC. Lai, C.ꢀK. Tan, Y.ꢀT. Huang, P.ꢀL. Shao and P.ꢀR.
Hsueh, J. Infect. Chemother., 2008, 14, 77ꢀ85.
10 Table 4. Correlation of hydrophobicity (ClogP) with antiꢀ
cryptococcal activity
5. J.ꢀP. Latgé, Clin. Microbiol. Rev., 1999, 12, 310ꢀ350.
6. B. J. Park, K. A. Wannemuehler, B. J. Marston, N. Govender,
P. G. Pappas and T. M. Chiller, AIDS, 2009, 23, 525ꢀ530.
7. W. G. Powderly, Clin. Infect. Dis., 1993, 17, 837ꢀ842.
8. J. N. Jarvis, A. Boulle, A. Loyse, T. Bicanic, K. Rebe, A.
Williams, T. S. Harrison and G. Meintjes, AIDS, 2009, 23,
1182ꢀ1183.
9. M. CuencaꢀEstrella, A. GomezꢀLopez, E. Mellado, M. J.
Buitrago, A. Monzon and J. L. RodriguezꢀTudela, Antimicrob.
Agents Chemother., 2006, 50, 917ꢀ921.
10. E. M. Bailey, D. J. Krakovsky and M. J. Rybak,
Pharmacother. J. Hum. Pharmacol. Drug Ther., 1990, 10,
146ꢀ153.
11. A. Pathak, F. D. Pien and L. Carvalho, Clin. Infect. Dis., 1998,
26, 334ꢀ338.
Peptide
ClogP
C. neoformans IC50 (ꢂg/mL)
55
5a
5b
5c
5d
5e
5f
5g
8a
8b
8c
8d
8e
8f
ꢀ1.36
0.68
1.14
0.85
2.37
2.33
1.92
ꢀ2.51
ꢀ0.47
ꢀ0.01
ꢀ0.30
1.22
1.18
0.76
NA
1.22
2.11
NA
0.16
0.2
0.62
NA
10.56
NA
60
65
NA
10.16
5.49
1.38
8g
12. A. EspinelꢀIngroff, J. Clin. Microbiol., 1998, 36, 2950ꢀ2956.
13. H. Jenssen, P. Hamill and R. E. W. Hancock, Clin. Microbiol.
Rev., 2006, 19, 491ꢀ511.
70
14. D. W. Denning, J. Antimicrob. Chemother., 2002, 49, 889ꢀ
891.
Conclusions
15. A. Butts and D. J. Krysan, PLoS Pathog., 2012, 8, e1002870.
16. D. J. Craik, D. P. Fairlie, S. Liras and D. Price, Chem. Biol.
Drug Des., 2013, 81, 136ꢀ147.
17. Y. Ge, D. L. MacDonald, K. J. Holroyd, C. Thornsberry, H.
Wexler and M. Zasloff, Antimicrob. Agents Chemother., 1999,
43, 782ꢀ788.
18. R. E. W. Hancock and H. ꢀG. Sahl, Nat. Biotechnol., 2006, 24,
1551ꢀ1557.
19. D. K. Mercer and D. A. O'Neil, Future Med. Chem., 2013, 5,
315ꢀ337.
20. J. L. Fox, Nat. Biotechnol., 2013, 31, 379ꢀ382.
21. M. B. StrÖm, Ø. Rekdal and J. S. Svendsen, J. Pept. Sci.,
2002, 8, 431ꢀ437.
22. M. B. StrÖm, B. E. Haug, M. L. Skar, W. Stensen, T. Stiberg
and J. S. Svendsen, J. Med. Chem., 2003, 46, 1567ꢀ1570.
23. B. E. Haug, W. Stensen, M. Kalaaji, Ø. Rekdal and J. S.
Svendsen, J. Med. Chem., 2008, 51, 4306ꢀ4314.
24. R. K. Sharma, R. P. Reddy, W. Tegge and R. Jain, J. Med.
Chem., 2009, 52, 7421ꢀ7431.
In summary we have prepared four series of dipeptides that were
15 based on the pharmacophore model of short antimicrobial
peptides. The peptides exhibited potent antifungal activity against
C. neoformans. The results also demonstrated that the peptides of
His(2ꢀaryl)ꢀArg class are more potent compared to TrpꢀHis(2ꢀ
aryl) class owing to a delicate balance required between
20 hydrophobicity and hydrophilicity in the peptidic structure. A
combination of dual hydrophobicꢀhydrophilic amino acid (His),
highly hydrophilic Arg residue and placement of NHBzl group at
the Cꢀterminus appeared to be ideal for strong antimicrobial
activity.
75
80
85
25 Acknowledgment
90
Amit Mahindra thanks the Council of Scientific and Industrial
Research (CSIR), New Delhi for the award of Senior Research
Fellowship. The authors wish to thank Ms. Marsha Wright and
Mr John Trott for biological testing. This work was supported by
30 the NIH, NIAID, Division of AIDS, Grant No. AI 27094
(antifungal) and the USDA Agricultural Research Service
25. Mahindra, A.; Bagra, N.; Wangoo, N.; Khan, S. I.; Jacob, M.
R.;
(DOI: 10.1021/ml500011v)
26. A. Mahindra and R. Jain, Synlett, 23, 1759ꢀ1764.
Jain,
R.
ACS
Med.
Chem.
Lett.
2014,
95
27. A. Mahindra, K. K. Sharma and R. Jain, Tetrahedron Lett.
2012, 53, 6931ꢀ6935.
28. A. Mahindra, K. Nooney, S. Uraon, K. K. Sharma and R. Jain,
RSC Adv., 2013, 3, 16810ꢀ16816.
29. A. Mahindra, N. Patel, N. Bagra and R. Jain, RSC Adv. 2014,
4, 3065ꢀ3069.
30. R. K. Sharma and R. Jain, Synlett, 2007, 603ꢀ606.
31. Reference Method for Broth Dilution Antifungal
Susceptibility Testing of Yeasts: Approved Standard, 2nd ed.;
NCCLS document M27ꢀA2; National Committee for Clinical
Laboratory Standards: Wayne, PA, 2002.
32. S. Kagan, D. Ickowicz, M. Shmuel, Y. Altschuler, E. Sionov,
M. Pitusi, A. Weiss, S. Farber, A. J. Domb and I. Polacheck,
Antimicrob. Agents Chemother., 2012, 56, 5603ꢀ5611.
Specific
Cooperative
Agreement
No.
58ꢀ6408ꢀ1ꢀ603
(antibacterial).
100
105
110
Notes and references
35 a*Department of Medicinal Chemistry, National Institute of
Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar,
Punjab 160 062, India Corresponding author. Tel.: +91 (172) 2292024;
Fax: +91 (172) 2214692; E-mail: rahuljain@niper.ac.in
bNational Center for Natural Products Research, School of Pharmacy,
40 The University of Mississippi, University, Mississippi 38677, USA
6
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]