Treatment of a deep-purple solution of 2 in DMSO-d6 with
1 M. Arresta and A. Dibenedetto, in Carbon Dioxide Recovery
and Utilization, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2010, p. 211.
2 T. Sakakura, J.-C. Choi and H. Yasuda, Chem. Rev., 2007,
107, 2365.
2 equiv. of [FeCp2](PF6) led to an immediate color change to
1
yellow, followed by a slow decay to purple. H NMR of the
resulting solution indicated formation of FeCp2, along with a
trace amount of 2. Formation of free 13CS2 was observed by
13C NMR spectrum. Addition of two more equivalents of
[FeCp2](PF6) has led to a significant increase in the free 13CS2
as indicated by 13C NMR spectrum. Based on these experi-
ments, we propose that the oxidation of 2 releases CS2 instead
of its functionalization. Compound 4 displays similar behavior,
releasing CS2 upon treatment with [FeCp2](PF6).
3 J. Mascetti, in Carbon Dioxide as a Chemical Feedstock, ed. M. Aresta,
Wiley-VCH, Weinheim, Germany, 2010, p. 55.
4 For selected examples of structurally characterized M-CO2 complexes,
see: (a) M. Aresta, C. F. Nobile, V. G. Albano, E. Forni and
M. Manassero, J. Chem. Soc., Chem. Commun., 1975, 636;
(b) G. Fachinetti, C. Floriani and P. F. Zanazzi, J. Am. Chem. Soc.,
1978, 100, 7405; (c) J. S. Field, R. J. Haines, J. Sundermeyer and
S. F. Woollam, J. Chem. Soc., Chem. Commun., 1990, 985;
(d) T.-F. Wang, C.-C. Hwu, C.-W. Tsai and K.-J. Lin, Organometallics,
1997, 16, 3089; (e) C. H. Lee, D. S. Laitar, P. Mueller and J. P. Sadighi,
J. Am. Chem. Soc., 2007, 129, 13802; (f) C. C. Lu, C. T. Sauoma,
M. W. Day and J. C. Peters, J. Am. Chem. Soc., 2007, 129, 4;
(g) J. C. Calabrese, T. Herskovitz and J. B. Kinney, J. Am. Chem.
Soc., 1983, 105, 5914.
5 (a) J. A. Ibers, Chem. Soc. Rev., 1982, 11, 57; (b) K. K. Pandey,
Coord. Chem. Rev., 1995, 140, 37.
6 W. Poppitz, Z. Anorg. Allg. Chem., 1982, 489, 67.
7 P. Haack, C. Limberg, T. Tietz and R. Metzinger, Chem. Commun.,
2011, 47, 6374.
8 E. M. Matson, W. P. Forrest, P. E. Fanwick and S. C. Bart, J. Am.
Chem. Soc., 2011, 133, 4948.
9 J. S. Anderson, V. M. Iluc and G. L. Hillhouse, Inorg. Chem., 2010,
49, 10203.
10 For selected recent references, see: (a) D. E. Herbert and
O. V. Ozerov, Organometallics, 2011, 30, 6641; (b) A. R. Fout,
Q. Zhao, D. J. Xiao and T. A. Betley, J. Am. Chem. Soc., 2011,
133, 16750; (c) T. C. Davenport and T. D. Tilley, Angew. Chem.,
Int. Ed., 2011, 50, 12205.
11 For selected recent references, see: (a) D. P. Hruszkewycz, J. Wu,
J. C. Green, N. Hazari and T. J. Schmeier, Organometallics, 2012,
31, 470; (b) J. P. Krogman, B. M. Foxman and C. M. Thomas,
J. Am. Chem. Soc., 2011, 133, 14582.
In summary, we report synthesis and characterization of the
dinuclear L1Ni2(CS2)2 complex featuring square planar Ni
centers ligated by iminopyridine chelates. Spectroscopic,
theoretical and structural investigation of the dinuclear CS2
complex 2 and its mononuclear analogue 4, and their COD-
ligated counterparts 1 and 3, reveal that the iminopyridine
serves as a redox accumulator, moderating redox changes in
Ni upon binding of a heteroallene. Our preliminary experi-
ments targeting oxidative modification of bound CS2 have
resulted in CS2 release in both 2 and 4. We are currently
preparing related CO2 complexes, and investigating their
reactivity. In addition, other dinucleating ligands are being
designed, to enable more reactive heteroallene adducts.
We thank Wayne State University for funding. SG thanks
Prof. H. B. Schlegel for helpful discussions. AB thanks Bashar
Ksebati and Lew Hryhorczuk for the experimental assistance.
The computational resources were provided by the WSU Grid.
Notes and references
12 A. Bhemaraju, R. L. Lord, P. Muller and S. Groysman, Organo-
¨
metallics, 2012, 31, 2120.
13 DFT calculations agree with these assignments.
14 (a) M. G. Mason, P. N. Swepston and J. A. Ibers, Inorg. Chem.,
1983, 22, 411; (b) C. Bianchini, C. Mealli, A. Meli and M. Sabat,
Inorg. Chem., 1984, 23, 4125; (c) J. J. Maj, A. D. Rae and
L. F. Dahl, J. Am. Chem. Soc., 1982, 104, 4278.
z Synthesis of 2. A 1.5 M THF solution of CS2 (0.15 mL, 0.231 mmol)
was added to a 5 mL violet-blue THF solution of Ni2(L1)(COD)2
(1, 75 mg, 0.115 mmol). A precipitate was obtained after the addition
of CS2. The reaction was stirred for 15 min, and the solid was
separated from the reaction mixture and washed with ether. Removal
of the supernatant followed by drying resulted a purple brown solid
(60 mg, 88%). The 13C-labeled sample was prepared in an identical
fashion. 1H NMR (DMSO-d6, 400 MHz) d 9.44 (d, J = 4.8, 2H),
8.90 (s, 2H), 8.23 (t, J = 7.6 Hz, 2H), 7.96 (d, J = 8.0, 2H), 7.90
(t, J = 6.4, 2H), 7.51 (s, 4H), 5.23 (s, 4H); 13C NMR (DMSO-d6,
75 MHz) d 267.87 (13CS2). MS (ESI) calcd for [Ni2(L1)(CS2)2]+ 581.9,
15 E. C. Volpe, P. T. Wolczanski and E. B. Lobkovsky, Organometallics,
2010, 29, 364.
16 For the structures of Group 10 CS2 complexes, see: (a) M. Baird,
G. Hartwell, Jr., R. Mason, A. I. M. Rae and G. Wilkinson, Chem.
Commun., 1967, 92; (b) C. Bianchini, D. Masi, C. Mealli and
A. Meli, Inorg. Chem., 1984, 23, 2838; (c) D. H. Farrar,
R. R. Gukathasan and S. A. Morris, Inorg. Chem., 1984,
23, 3258; (d) P. Leoni, M. Pasquali, L. Fadini, A. Albinati,
P. Hofmann and M. Metz, J. Am. Chem. Soc., 1997, 119, 8625;
(e) T. Kashiwagi, N. Yasuoka, T. Ueki, N. Kasai, M. Kakudo,
S. Takahashi and N. Hagihara, Bull. Chem. Soc. Jpn., 1968,
41, 296.
found 581.8; [Ni2(L1)(CS2)]+ 505.9, found 505.8. IR (cmꢀ1 12CS/13CS
,
signals): 1138/1095 (s), 648/633 (s). Anal. calcd for C22H18N4Ni2S4: C,
45.24; H, 3.11; N, 9.59. Found: C, 44.97; H, 3.27 N, 9.32.
y Crystal data for 2. C11H9N2NiS2, M = 292.03, monoclinic, space
group P21/n, a = 7.2464(7) A, b = 10.7305(9) A, c = 14.446(1) A,
b = 94.265(5)1, V = 1120.14(17) A, Dc = 1.732 g cmꢀ1, Z = 4, m =
2.073 mmꢀ1, T = 100(2), 1920 unique reflections, R1(I > 2s(I)) =
0.0695, wR2(I > 2s(I)) = 0.1731, GOF = 1.071.
17 (a) C. C. Lu, E. Bill, T. Weyhermuller, E. Bothe and K. Wieghardt,
¨
J. Am. Chem. Soc., 2008, 130, 3181–3197; (b) C. C. Lu, S. DeBeer
z Crystal data for 4. C28H24N4Ni2S4, M = 662.17, triclinic, space
%
George, T. Wehermuller, E. Bill, E. Bothe and K. Wieghardt,
¨
Angew. Chem., 2008, 120, 6484.
group P1, a = 8.7358(7) A, b = 9.5434(7) A, c = 17.008(1) A, a =
98.210(5)1, b = 98.742(5)1, g = 96.563(5)1, V = 1373.60(19) A, Dc =
1.601 g cmꢀ1, Z = 2, m = 1.701 mmꢀ1, T = 100(2), 5945 unique
reflections, R1(I > 2s(I)) = 0.0712, wR2(I > 2s(I)) = 0.2004, GOF =
1.030.
18 (a) T. W. Myers and L. A. Berben, J. Am. Chem. Soc., 2011,
133, 11865; (b) T. W. Myers, N. Kazem, S. Stoll, R. D. Britt,
M. Shanmugam and L. A. Berben, J. Am. Chem. Soc., 2011,
133, 8662; (c) T. W. Myers and L. A. Berben, Inorg. Chem.,
2012, 51, 1480.
19 N. A. Ketterer, H. Fan, K. J. Blackmore, X. Yang, J. W. Ziller,
M.-H. Baik and A. F. Heyduk, J. Am. Chem. Soc., 2008, 130, 4364.
20 (a) K. G. Caulton, Eur. J. Inorg. Chem., 2012, 435; (b) P. J. Chiric,
Forum on Redox-Active Ligands, Inorg. Chem., 2011, 50, 9737.
8 See ESIw for calculations details.
** Crystal data for 3. C21H24N2Ni, M = 363.13, monoclinic, space
group C2/c, a = 25.286(3) A, b = 7.3278(6) A, c = 21.348(2) A, b =
120.423(8)1, V = 3411.0(6) A, Dc = 1.414 g cmꢀ1, Z = 8, m =
1.141 mmꢀ1, T = 100(2), 6713 unique reflections, R1(I > 2s(I)) =
0.0258, wR2(I > 2s(I)) = 0.0710, GOF = 1.046.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 9595–9597 9597