kernels, and examples of selectivity in reductive elimination
from d6 MCsp3Csp2Csp species where the organyl groups are not
constrained, e.g. the sp3 centre is a methyl group, the aryl group
is unsubstituted at the ortho-positions, and palladacycles or
palladocycles involving the organyl groups are not present. The
observed decomposition pathway under mild conditions in solu-
tion for all of the complexes involves preferential formation of
Acknowledgements
We thank the Australian Research Council for financial support,
Dr James Horne of the Central Science Laboratory for assistance
with analysis of organic products, and the National Compu-
tational Infrastructure for high performance computing resources.
We thank Professor Michelle Coote (Australian National Univer-
sity) for valuable suggestions and discussion. Aspects of this
research were undertaken at the MX1 beamline at the Australian
Synchrotron, Victoria, Australia.
C
sp2–Csp bonds, in this case p-Tol-CuCR (R = But, SiMe3).
Reports to date of C–C reductive elimination at PdIV and
related PtIV centres indicate either direct elimination from octa-
hedral species or following dissociation of one donor to give a
five-coordinate intermediate. Kinetic32a–c and related studies32d,e
indicate dissociation of iodide from PdIVIMe3(L2) (L2 = biden-
tate nitrogen donor) in reductive elimination of ethane,32a,d,e
although this reaction proceeds without dissociation in the pres-
ence of high excess iodide concentration.32a In the present
system, where direct reaction from octahedral PdIV(OTf)Me-
(p-Tol)(CuCR)(dmpe) is indicated, and has been examined at
much lower temperature than other studies, the activation par-
ameters are similar to those for ethane elimination from PdIV-
IMe3(bpy) when conducted at high iodide concentration in
acetone-d6, when reaction is non-dissociative (Ea 78 11 kJ mol−1,
References
1 (a) D. Milstein and J. K. Stille, J. Am. Chem. Soc., 1979, 101, 4981;
(b) A. Gillie and J. K. Stille, J. Am. Chem. Soc., 1980, 102, 4933;
(c) A. Moravskiy and J. K. Stille, J. Am. Chem. Soc., 1981, 103, 4182;
(d) J. K. Stille, in The Chemistry of the Metal–Carbon Bond, ed.
F. R. Hartley and S. Patai, Wiley, New York, 1985, vol. 2, p. 625.
2 (a) O. Lavastre, J. Plass, P. Bachmann, S. Guesmi, C. Moinet and
P. H. Dixneuf, Organometallics, 1997, 16, 184; (b) S. Hung-Fai Chong,
S. Chan-Fung Lam, V. Wing-Wah Yam, N. Zhu, K.-K. Cheung,
S. Fathallah, K. Costuas and J.-F. Halet, Organometallics, 2004, 23,
4924.
3 (a) F. A. Cotton, I. O. Koshevoy, P. Lahuerta, C. A. Murillo, M. Sanaú,
M. A. Ubeda and Q. Zhao, J. Am. Chem. Soc., 2006, 128, 13674;
(b) D. Penno, V. Lillo, I. O. Koshevoy, M. Sanaú, M. A. Ubeda,
P. Lahuerta and E. Fernández, Chem.–Eur. J., 2008, 14, 10648.
4 (a) A. Bayler, A. J. Canty, P. G. Edwards, B. W. Skelton and
A. H. White, J. Chem. Soc., Dalton Trans., 2000, 3325; (b) A. Bayler,
A. J. Canty, B. W. Skelton and A. H. White, J. Organomet. Chem., 2000,
595, 296; (c) A. Maleckis and M. S. Sanford, Organometallics, 2011, 30,
6617.
5 J. Cámpora, P. Palma, D. del Rio, E. Carmona, C. Graiff and
A. Tiripicchio, Organometallics, 2003, 22, 3345.
6 M. Sharma, A. J. Canty, M. G. Gardiner and R. C. Jones, J. Organomet.
Chem., 2011, 696, 1441.
7 (a) A. J. Canty, T. Rodemann, B. W. Skelton and A. H. White, Organo-
metallics, 2006, 25, 3996; (b) A. J. Canty, R. P. Watson, S. S. Karpiniec,
T. Rodemann, M. G. Gardiner and R. C. Jones, Organometallics, 2008,
27, 3203.
8 (a) A. J. Canty, M. C. Denney, J. Patel, H. Sun, B. W. Skelton and
A. H. White, J. Organomet. Chem., 2004, 689, 672; (b) D. Kruis,
B. A. Markies, A. J. Canty, J. Boersma and G. van Koten, J. Organomet.
Chem., 1997, 532, 235.
ΔS‡ −53
25 J K−1 mol−1 in acetone), and are indicative
of a polar transition state with six-coordinate metal centres.32a
Dissociation of PhSe− is indicated for PdIV(SePh)2Me2(bpy)32c
and, for carboxylato- complexes PdIV(O2CR)2(bzq-C,N)2 (bzq =
−
benzo[h]quinolinyl) dissociation of RCO2 occurs prior to C–O
coupling but C–C coupling occurs directly from the octahedral
species.32f Computational studies are supportive of a five-coordi-
nate intermediate [PdIVI(C–C)(o-Tol)(PMe3)]+ (C–C = phenyl-
norbornyl), in the reaction of o-TolI with Pd(C–C)(PMe3)2 to
give an aryl-(o-Tol) coupled product C7H10C6H5-(o-Tol).33
More extensive studies of C–C bond formation have been
reported for platinum(IV), including experimental34 and compu-
tational studies34k,35 supporting X− dissociation for
PtXMe3(dppe) (dppe = 1,2-bis(diphenylphosphino)ethane (X =
I,34c,d OAr, O2CR34e,g) and PtI2(p-FC6H4)2(dmpe);34k pyridine
dissociation from [PtMe3(dppe)(py)]+;34j dissociation of one
phosphine donor for PtXMe3(dppe) (X = H,34k,35d,e Me34f,h,i,35d,e);
dissociation of one isonitrile for PtMe4(CNR)2 (R = Me, Xylyl);34b
9 M. D. Bachi, N. Bar-Ner, C. M. Crittell, P. J. Stang and
B. L. Williamson, J. Org. Chem., 1991, 56, 3912.
10 A. R. Katritzky, E. S. Ignatchenko, R. A. Barcock and V. S. Lobanov,
Anal. Chem., 1994, 66, 1799.
11 (a) J. T. Scanlon and D. E. Willis, J. Chromatogr. Sci., 1985, 23, 333;
(b) A. D. Jorgensen, K. C. Picel and V. C. Stamoudis, Anal. Chem., 1990,
62, 683; (c) A. E. Karagözler and C. F. Simpson, J. Chromatogr., A,
1978, 150, 329.
12 T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen,
A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter,
R. P. Phizackerley, S. M. Soltis and P. Kuhn, J. Synchrotron Radiat.,
2002, 9, 401.
and I− loss slightly favoured for [PtI4(CHvCIR)2]2− 35b
for PtR4L2 (L = PMe3, PH3, PF3, CO, NH3), dissociation of
for CHvCH2, direct
Me,35f and, for
;
and,
L
R
=
R =
elimination when L = PMe3 but both pathways competitive for
other L.35f
The computational results support the presence of three low-
energy isomers of the reactants. These isomers could, in prin-
ciple, all react to form products, however the results indicate that
4b_TS1 and 4c_TS1 are early transition states and correspond to
the formation of the observed product with the strongest C–C
bond.
13 G. M. Sheldrick, SHELX97, Programs for Crystal Structure Analysis,
Universität Göttingen, Germany, 1998.
14 L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.
15 S. Grimme, J. Comput. Chem., 2006, 27, 1787.
16 (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270;
(b) W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284; (c) P. J. Hay
and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
17 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213.
18 C. Gonzalez and H. B. Schlegel, J. Phys. Chem., 1990, 94, 5523.
19 (a) S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117;
(b) S. Miertus and J. Tomasi, Chem. Phys., 1982, 65, 239;
(c) C. J. Cramer and D. G. Truhlar, Chem. Rev., 1999, 99, 2161;
(d) J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999.
20 See ESI† for complete references.
In summary, we report the NMR detection of PdIV species
fac-Pd(methyl)(p-tolyl)(alkynyl)(P–P)(OTf) that exhibit high
selectivity for reductive elimination via tolyl–alkynyl coupling at
low temperature. Kinetic studies indicate that elimination occurs
directly from the six-coordinate complexes, with support from
computational studies that also suggest that the preferred route is
via the isomer with the alkynyl group trans to the triflate ligand,
as illustrated in Scheme 1 for reagent 1 and R1 = alkynyl.
21 A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 11820–11828 | 11827