T. Subramanian et al. / Journal of Molecular Catalysis A: Chemical 363–364 (2012) 115–121
121
the results indicates that our catalytic system (entry 19) exhibits
better activity compared to conventional catalysts which require
higher reaction time (entries 1, 2, 4–11, 13, 14 and 17), higher tem-
perature (entries 5, 8, and 10) and poor reusability of the catalyst
(entries 2–5 and 8–18).
[12] J.E. Taylor, M.D. Jones, J.M.J. Williams, S.D. Bull, Org. Lett. 12 (2010) 5740.
[13] H. Hagiwara, M. Sekifuji, T. Hoshi, T. Suzuki, B. Quanxi, K. Qiao, C. Yokoyama,
Synlett 4 (2008) 608.
[14] D.-G. Gu, S.-J. Ji, H.-X. Wang, Q.-Y. Xu, Synth. Commun. 38 (2008) 1212.
[15] K. Tabatabaeian, M. Mamaghani, N.O. Mahmoodi, A. Khorshidi, J. Mol. Catal. A:
Chem. 270 (2007) 112.
[16] L.-W. Xu, W. Zhou, L. Yang, C.-G. Xia, Synth. Commun. 37 (2007) 3095.
[17] S.-Y. Wang, S.-J. Ji, T.-P. Loh, Synlett 15 (2003) 2377.
[18] P.E. Harrington, M.A. Kerr, Synlett 11 (1996) 1047.
[19] G. Babu, P.T. Perumal, Aldrichim. Acta 33 (2000) 16.
[20] M. Kawatsura, S. Aburatani, J. Uenishi, Synlett (2005) 2492.
[21] P.E. Harrington, M.A. Kerr, Can. J. Chem. 76 (1998) 1256.
[22] K. Manobe, N. Aoyama, S. Kobayashi, Adv. Synth. Catal. 343 (2001) 174.
[23] G. Dujardin, J.M. Poirier, Bull. Soc. Chim. Fr. 131 (1994) 900.
[24] I. Komoto, S. Kobayashi, Org. Lett. 4 (2002) 1115.
[25] S.J. Ji, S.Y. Wang, Synlett 16 (2003) 2074.
4. Conclusions
In this study, we have demonstrated a, very simple, mild
reaction protocol with greater selectivity, short reaction time
and efficiency for Michael addition of indoles to ␣,-unsaturated
ketones catalyzed by Al-MCM-41. The unique properties of present
system are outlined as below: (a) the procedure is operationally
simple and can furnish a wide variety of 3-substituted indole
derivatives in good yields, (b) the catalyst can be recycled with com-
parable activity and (c) there is no need for any other additive to
promote the reaction. This method is a practical alternative due its
simplicity, environmental acceptability and inexpensiveness. This
report clearly exhibits the promising abilities of mesoporous alu-
minosilicates as catalysts in organic synthesis, especially for fine
chemical synthesis.
[26] N. Azizi, F. Arynasab, M.R. Saidi, Org. Biomol. Chem. 4 (2006) 4275.
[27] G. Maiti, P. Kundu, Synth. Commun. 37 (2007) 2309.
[28] W. Zhou, L. Li, L.-W. Xu, H.-Y. Qiu, G.-Q. Lai, C.-G. Xia, A.-S. Castanet, Synth.
Commun. 38 (2008) 1638.
[29] S.K. Nayak, Synth. Commun. 36 (2006) 1307.
[30] H. Firouzabadi, N. Iranpoor, F. Nowrouzi, Chem. Commun. 6 (2005) 789.
[31] A. Arcadi, G. Bianchi, M. Chiarini, G.D. Anniballe, F. Marinelli, Synlett 6 (2004)
944.
[32] Z.-P. Zhan, K. Lang, Synlett 10 (2005) 1551.
[33] Z.-P. Zhan, R.-F. Yang, K. Lang, Tetrahedron Lett. 46 (2005) 3859.
[34] D.U. Singh, P.R. Singh, S.D. Samant, Synth. Commun. 36 (2006) 1265.
[35] M.L. Kantam, S. Laha, J. Yadav, B.M. Choudary, B. Sreedhar, Adv. Synth. Catal.
348 (2006) 867.
Acknowledgements
[36] Y. Mori, K. Kakumoto, K. Manabe, S. Kobayashi, Tetrahedron Lett. 41 (2000)
3107.
[37] M.M. Alam, R. Varala, S.R. Adapa, Tetrahedron Lett. 44 (2003) 5115.
[38] K. Iwanami, H. Seo, J.-C. Choi, T. Sakakura, H. Yasuda, Tetrahedron 66 (2010)
1898.
[39] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-
W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J.
Am. Chem. Soc. 114 (1992) 10834.
We are grateful to the University of Grants Commission (UGC),
New Delhi for UGC-BSR grant and UGC-BSR-JRF.
Appendix A. Supplementary data
[40] M. Cai, J. Peng, W. Hao, G. Ding, Green Chem. 13 (2011) 190.
[41] S. Haldar, S. Koner, J. Org. Chem. 75 (2010) 6005.
[42] K. Iwanami, J.-C. Choi, B. Lu, T. Sakakura, H. Yasuda, Chem. Commun. 8 (2008)
1002.
[43] H. Li, J. Chen, Y. Wan, W. Chai, F. Zhanga, Y. Lu, Green Chem. 9 (2007) 273.
[44] M.J. Climent, A. Corma, H. Garcia, R. Guil-Lopez, S. Iborra, V. Forne, J. Catal. 197
(2001) 385.
Supplementary data associated with this article can be
References
[45] E. Armengol, M.L. Cano, A. Corma, H. Garcia, M.T. Navarro, J. Chem. Soc. Chem.
Commun. 5 (1995) 519.
[1] C.S. Schwalm, M.A. Ceschi, D. Russowsky, J. Braz. Chem. Soc. 22 (2011) 623.
[2] G. Bartoli, M. Bartolacci, M. Bosco, G. Foglia, A. Giuliani, E. Marcantoni, L. Sambri,
E. Torregiani, J. Org. Chem. 68 (2003) 4594.
[3] M. Bandini, P.G. Cozzi, M. Giacomini, P. Melchiorre, S. Selva, A.U. Ronchi, J. Org.
Chem. 67 (2002) 3700.
[4] V. Kumar, S. Kaur, S. Kumar, Tetrahedron Lett. 47 (2006) 7001.
[5] L.-T. An, J.-P. Zou, L.-L. Zhang, Y. Zhang, Tetrahedron Lett. 48 (2007) 4297.
[6] B.M. Trost, Acc. Chem. Res. 35 (2002) 695.
[7] B.M. Trost, Science 254 (1991) 1471.
[8] P. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford, Oxford,
UK, 1998.
[9] R. Tahir, K. Banert, A. Solhy, S. Sebti, J. Mol. Catal. A: Chem. 246 (2006) 39.
[10] J. Ezquerra, C. Pedregal, C. Lamas, J. Org. Chem. 61 (1996) 5804.
[11] C.-J. Yu, C.-J. Liu, Molecules 14 (2009) 3222.
[46] M. Onaka, R. Yamasaki, Chem. Lett. 27 (1998) 259.
[47] B.R. Jermy, A. Pandurangan, J. Mol. Catal. A: Chem. 256 (2006) 184.
[48] C.T. Krege, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992)
710.
[49] V. Rama, K. Kanagaraj, K. Pitchumani, J. Org. Chem. 76 (2011) 9090.
[50] K. Namitharan, K. Pitchumani, Org. Lett. 13 (2011) 5728.
[51] K. Namitharan, K. Pitchumani, Eur. J. Org. Chem. 3 (2010) 411.
[52] A. Dhakshinamoorthy, A. Sharmila, K. Pitchumani, Chem. Eur. J. 16 (2010)
1128.
[53] K. Namitharan, M. Kumarraja, K. Pitchumani, Chem. Eur. J. 15 (2009) 2755.
[54] Z.-H. Huang, J.-P. Zou, W.-Q. Jiang, Tetrahedron Lett. 47 (2006) 7965.
[55] G. Li Wu, L. Min Wu, Chin. Chem. Lett. 19 (2008) 55.
[56] B.M. Trost, G.A. Molander, J. Am. Chem. Soc. 103 (1981) 5969.