Q.-S. Li et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6596–6601
6601
r2 = 0.754). The observed and predicted values and their residual
References and notes
values for the training set and test set molecules in 3D-QSAR model
are given in Table 4 and their graphical relationship is illustrated in
Figure 2A, respectively. The plot of the observed IC50 vs. the pre-
dicted results shows that this model has a good predictive power
which can be used in prediction of activity for new pyrazole sali-
cylamide derivatives as BRAFV600E inhibitors.
1. Robinson, M. J.; Cobb, M. H. Curr. Opin. Cell Biol. 1997, 9, 180.
2. Johnson, G. L.; Lapadat, R. Science 1911, 2002, 298.
3. Friday, B. B.; Adjei, A. A. Clin. Cancer Res. 2008, 14, 342.
4. Kyriakis, J. M.; Avruch, J. Physiol. Rev. 2001, 81, 807.
5. Wellbrock, C.; Karasarides, M.; Marais, R. Nat. Rev. Mol. Cell Biol. 2004, 5, 875.
6. Avruch, J.; Khokhlatchev, A.; Kyriakis, J. M.; Luo, Z.; Tzivion, G.; Vavvas, D.;
Zhang, X. F. Recent Prog. Horm. Res. 2001, 56, 127.
7. Davies, H.; Bignell, G. R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.;
Woffendin, H.; Garnett, M. J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.;
Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.;
Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.;
Gusterson, B. A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.;
Maitland, N.; Chenevix-Trench, G.; Riggins, G. J.; Bigner, D. D.; Palmieri, G.;
Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J. W.; Leung, S. Y.; Yuen, S. T.; Weber,
B. L.; Seigler, H. F.; Darrow, T. L.; Paterson, H.; Marais, R.; Marshall, C. J.;
Wooster, R.; Stratton, M. R.; Futreal, P. A. Nature 2002, 417, 949.
8. Garnett, M. J.; Marais, R. Cancer Cell 2004, 6, 313.
9. Tuveson, D. A.; Weber, B. L.; Herlyn, M. Cancer Cell 2003, 4, 95.
10. Wan, P. T. C.; Garnett, M. J.; Roe, S. M.; Lee, S.; Niculescu-Duvaz, D.; Good, V. M.;
Jones, C. M.; Marshall, C. J.; Springer, C. J.; Barford, D.; Marais, R. Cell 2004, 116,
855.
11. Hingorani, S. R.; Jacobetz, M. A.; Robertson, G. P.; Herlyn, M.; Tuveson, D. A.
Cancer Res. 2003, 63, 5198.
12. Karasarides, M.; Chiloeches, A.; Hayward, R.; Niculescu-Duvaz, D.; Scanlon, I.;
Friedlos, F.; Ogilvie, L.; Hedley, D.; Martin, J.; Marshall, C. J.; Springer, C. J.;
Marais, R. Oncogene 2004, 23, 6292.
A
contour plot of the electrostatic field region favorable
(in blue) or unfavorable (red) for the BRAFV600E affinity is shown
in Figure 2B. The energy grids corresponding to the favorable (in
green) or unfavorable (yellow) steric effects for the BRAFV600E affin-
ity are shown in Figure 2C. A good ligand should have strong Van
der Waals attraction in the green areas and a polar group in the
blue electrostatic potential areas (which are dominant close to
the skeleton). Several key features of the 3D-QSAR contour map
are predicted to increase BRAFV600E affinity: (1) More bulk near
the phenolic hydroxyl group and less bulk 5-substituent group of
ring B (steric study); (2) More bulk group substituted in the ortho
and meta position of ring A (steric study); (3) A more positive envi-
ronment all around the para position of the 4-methoxyphenyl ring
and ring B (electronic study); (4) A more negative environment
around the ortho position of ring B (electronic study).
13. Gould, A. E.; Adams, R.; Adhikari, S.; Aertgeerts, K.; Afroze, R.; Blackburn, C.;
Calderwood, E. F.; Chau, R.; Chouitar, J.; Duffey, M. O.; England, D. B.; Farrer, C.;
Forsyth, N.; Garcia, K.; Gaulin, J.; Greenspan, P. D.; Guo, R.; Harrison, S. J.;
Huang, S. C.; Iartchouk, N.; Janowick, D.; Kim, M. S.; Kulkarni, B.; Langston, S. P.;
Liu, J. X.; Ma, L. T.; Menon, S.; Mizutani, H.; Paske, E.; Renou, C. C.; Rezaei, M.;
Rowland, R. S.; Sintchak, M. D.; Smith, M. D.; Stroud, S. G.; Tregay, M.; Tian, Y.;
Veiby, O. P.; Vos, T. J.; Vyskocil, S.; Williams, J.; Xu, T.; Yang, J. J.; Yano, J.; Zeng,
H.; Zhang, D. M.; Zhang, Q.; Galvin, K. M. J. Med. Chem. 1836, 2011, 54.
14. Bollag, G.; Hirth, P.; Tsai, J.; Zhang, J. Z.; Ibrahim, P. N.; Cho, H. N.; Spevak, W.;
Zhang, C.; Zhang, Y.; Habets, G.; Burton, E.; Wong, B.; Tsang, G.; West, B. L.;
Powell, B.; Shellooe, R.; Marimuthu, A.; Nguyen, H.; Zhang, K. Y. J.; Artis, D. R.;
Schlessinger, J.; Su, F.; Higgins, B.; Iyer, R.; D’Andrea, K.; Koehler, A.; Stumm,
M.; Lin, P. S.; Lee, R. J.; Grippo, J.; Puzanov, I.; Kim, K. B.; Ribas, A.; McArthur, G.
A.; Sosman, J. A.; Chapman, P. B.; Flaherty, K. T.; Xu, X. W.; Nathanson, K. L.;
Nolop, K. Nature 2010, 467, 596.
15. Wellbrock, C.; Hurlstone, A. Biochem. Pharmacol. 2010, 80, 561.
16. Barsoum, F. F.; Hosni, H. M.; Girgis, A. S. Bioorg. Med. Chem. 2006, 14, 3929.
17. Ghorab, M. M.; Ragab, F. A.; Alqasoumi, S. I.; Alafeefy, A. M.; Aboulmagd, S. A.
Eur. J. Med. Chem. 2010, 45, 171.
18. Liu, X. H.; Cui, P.; Song, B. A.; Bhadury, P. S.; Zhu, H. L.; Wang, S. F. Bioorg. Med.
Chem. 2008, 16, 4075.
19. Luo, C.; Xie, P.; Marmorstein, R. J. Med. Chem. 2008, 51, 6121.
20. Kim, M. H.; Kim, M.; Yu, H.; Kim, H.; Yoo, K. H.; Sim, T.; Hah, J. M. Bioorg. Med.
Chem. 1915, 2011, 19.
21. Discovery Studio 3.1, Accelrys Software Inc., San Diego, 2011.
22. Wu, G.; Robertson, D. H.; Brooks, C. L.; Vieth, M. J. Comput. Chem. 2003, 24,
1549.
In conclusion, virtual screening of our designed pyrazole deriv-
atives resulted in the identification of 3,5-diarylpyrazoline salicyl-
amide derivative Hit 1, which served as the starting point for the
design of potent V600E mutant BRAF inhibitors. In order to obtain
more pharmacophore understandings of 4, 5-dihydro-pyrazole sal-
icylamide derivatives as BRAFV600E inhibitors and rational struc-
tural optimization, a series of novel analogues of Hit 1 have been
designed and prepared. Compound 25 displayed the most potent
inhibitory activity, with IC50 value of 0.16
GI50 value of 0.24 M for mutant BRAF-dependent WM266.4 cells.
l
M for BRAFV600E and
l
The BRAFWT cellular activity and BRAFV600E cell based pERK activity
of compound 25 suggested it could selectively inhibit proliferation
of mutant BRAF-dependent melanoma cell line through inhibition
of oncogenic BRAF. The SAR analysis was performed to provide cru-
cial pharmacophore clues that could use in further structure opti-
mization. Above all, the results obtained from this study suggest
that 3,5-diarylpyrazoline salicylamide skeleton may serve as a no-
vel scaffold for the further development of more potent and selec-
tive BRAFV600E inhibitors which use as mutant BRAF-dependent
melanoma therapeutic agents.
23. King, A. J.; Patrick, D. R.; Batorsky, R. S.; Ho, M. L.; Do, H. T.; Zhang, S. Y.; Kumar,
R.; Rusnak, D. W.; Takle, A. K.; Wilson, D. M.; Hugger, E.; Wang, L. F.; Karreth, F.;
Lougheed, J. C.; Lee, J.; Chau, D.; Stout, T. J.; May, E. W.; Rominger, C. M.;
Schaber, M. D.; Luo, L. S.; Lakdawala, A. S.; Adams, J. L.; Contractor, R. G.;
Smalley, K. S. M.; Herlyn, M.; Morrissey, M. M.; Tuveson, D. A.; Huang, P. S.
Cancer Res. 2006, 66, 11100.
Acknowledgment
This work was financed by National Natural Science Foundation
of China (No. J1103512).
24. Dai, Y.; Wang, Q.; Zhang, X.; Jia, S.; Zheng, H.; Feng, D.; Yu, P. Eur. J. Med. Chem.
2010, 45, 5612.
Supplementary data
Supplementary data associated with this article can be found, in