10.1002/anie.201704354
Angewandte Chemie International Edition
COMMUNICATION
A. Baceiredo, C. Álvarez-Toledano, Tetrahedron: Asymmetry 2015, 26,
802; b) M. Braun, P. Meletis, R. Visse, Adv. Synth. Catal. 2011, 353,
3380; c) A. Saitoh, K. Achiwa, T. Morimoto, Tetrahedron: Asymmetry
1998, 9, 741. For related Ru-catalyzed reaction, see ref. 3h. However,
only one silyl ketene acetal substrate was presented in ref. 3h and the
product was obtained in only 81% ee. For lactones: d) P. Meletis, M.
Patil, W. Thiel, W. Frank, M. Braun, Chem. Eur. J. 2011, 17, 11243.
For enantioselective allylation of amides: a) K. Zhang, Q. Peng, X.-L.
Hou, Y.-D. Wu, Angew. Chem. Int. Ed. 2008, 47, 1741. For
enantioselective decarboxylative allylation of lactams: b) D. C. Behenna,
Y. Liu, T. Yurino, J. Kim, D. E. White, S. C. Virgil, B. M. Stoltz, Nat.
Chem. 2012, 4, 130; c) B. M. Trost, D. J. Michaelis, J. Charpentier, J.
Xu, Angew. Chem. Int. Ed. 2012, 51, 204; d) K. M. Korch, C.
Eidamshaus, D. C. Behenna, S. Nam, D. Horne, B. M. Stoltz, Angew.
Chem. Int. Ed. 2015, 54, 179; e) Y. Numajiri, G. Jiménez-Osés, B.
Wang, K. N. Houk, B. M. Stoltz, Org. Lett. 2015, 17, 1082. For
enantioselective decarboxylative allylation of lactones: f) J. James, P. J.
Guiry, ACS Catal. 2017, 7, 1397; g) R. Akula, P. J. Guiry, Org. Lett.
2016, 18, 5472.
Keywords: alkylation • asymmetrical catalysis •
enantioselectivity • esters • iridium
[1]
a) B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395; b) G.
Helmchen, A. Dahnz, P. Dübon, M. Schelwies, R. Weihofen, Chem.
Commun. 2007, 675; c) Z. Lu, S. Ma, Angew. Chem. Int. Ed. 2008, 47,
258; d) J. F. Hartwig, L. M. Stanley, Acc. Chem. Res. 2010, 43, 1461;
e) P. Tosatti, A. Nelson, S. P. Marsden, Org. Biomol. Chem. 2012, 10,
3147; f) S. Oliver, P. A. Evans, Synthesis 2013, 3179; g) J. C. Hethcox,
S. E. Shockley, B. M. Stoltz, ACS Catal. 2016, 6, 6207; h) U. Kazmaier,
Org. Chem. Front. 2016, 3, 1541.
[9]
[2]
For selected recent publications, see: a) G. Jiang, B. List, Angew.
Chem. Int. Ed. 2011, 50, 9471; b) R. A. Craig, S. A. Loskot, J. T. Mohr,
D. C. Behenna, A. M. Harned, B. M. Stoltz, Org. Lett. 2015, 17, 5160; c)
K. Huwig, K. Schultz, U. Kazmaier, Angew. Chem. Int. Ed. 2015, 54,
9120; d) B. M. Trost, E. J. Donckele, D. A. Thaisrivongs, M. Osipov, J.
T. Masters, J. Am. Chem. Soc. 2015, 137, 2776; e) T. B. Wright, P. A.
Evans, J. Am. Chem. Soc. 2016, 138, 15303.
[3]
For selected publications, see: a) E. C. Burger, J. A. Tunge, Org. Lett.
2004, 6, 4113; b) H. He, X.-J. Zheng, Y. Li, L.-X. Dai, S.-L. You, Org.
Lett. 2007, 9, 4339; c) M. Chen, J. F. Hartwig, Angew. Chem. Int. Ed.
2014, 53, 12172; d) M. Chen, J. F. Hartwig, Angew. Chem. Int. Ed.
2014, 53, 8691; e) X. Huo, G. Yang, D. Liu, Y. Liu, I. D. Gridnev, W.
Zhang, Angew. Chem. Int. Ed. 2014, 53, 6776; f) M. Chen, J. F. Hartwig,
J. Am. Chem. Soc. 2015, 137, 13972; g) M. Chen, J. F. Hartwig, Angew.
Chem. Int. Ed. 2016, 55, 11651; h) N. Kanbayashi, A. Yamazawa, K.
Takii, T. Okamura, K. Onitsuka, Adv. Synth. Catal. 2016, 358, 555.
For selected recent publications, see: a) J.-P. Chen, C.-H. Ding, W. Liu,
X.-L. Hou, L.-X. Dai, J. Am. Chem. Soc. 2010, 132, 15493; b) M.
Chiarucci, M. di Lillo, A. Romaniello, P. G. Cozzi, G. Cera, M. Bandini,
Chem. Sci. 2012, 3, 2859; c) S. Krautwald, D. Sarlah, M. A. Schafroth,
E. M. Carreira, Science 2013, 340, 1065; d) W. Chen, M. Chen, J. F.
Hartwig, J. Am. Chem. Soc. 2014, 136, 15825; e) S. Krautwald, M. A.
Schafroth, D. Sarlah, E. M. Carreira, J. Am. Chem. Soc. 2014, 136,
3020; f) X. Huo, R. He, X. Zhang, W. Zhang, J. Am. Chem. Soc. 2016,
138, 11093; g) X. Jiang, W. Chen, J. F. Hartwig, Angew. Chem. Int. Ed.
2016, 55, 5819; h) J. Liu, Z. Han, X. Wang, F. Meng, Z. Wang, K. Ding,
Angew. Chem. Int. Ed. 2017, 56, 5050.
[10] a) L. S. Hegedus, W. H. Darlington, C. E. Russell, J. Org. Chem. 1980,
45, 5193; b) C. Carfagna, L. Mariani, A. Musco, G. Sallese, R. Santi, J.
Org. Chem. 1991, 56, 3924; c) H. M. R. Hoffmann, A. R. Otte, A. Wilde,
Angew. Chem. Int. Ed. 1992, 31, 234; d) A. R. Otte, A. Wilde, H. M. R.
Hoffmann, Angew. Chem. Int. Ed. 1994, 33, 1280.
[11] For the original discovery: a) T. Ohmura, J. F. Hartwig, J. Am. Chem.
Soc. 2002, 124, 15164; b) C. A. Kiener, C. Shu, C. Incarvito, J. F.
Hartwig, J. Am. Chem. Soc. 2003, 125, 14272. For recent mechanistic
studies: c) S. T. Madrahimov, D. Markovic, J. F. Hartwig, J. Am. Chem.
Soc. 2009, 131, 7228; d) S. T. Madrahimov, J. F. Hartwig, J. Am. Chem.
Soc. 2012, 134, 8136; e) S. T. Madrahimov, Q. Li, A. Sharma, J. F.
Hartwig, J. Am. Chem. Soc. 2015, 137, 14968. And ref. 3f. For recent
iridium-catalyzed enantioselective allylations under relatively neutral
conditions: see ref. 3c, 3d, 3f, 3g and 7d.
[4]
[12] For desulfonation: a) W.-B. Liu, S.-C. Zheng, H. He, X.-M. Zhao, L.-X.
Dai, S.-L. You, Chem. Commun. 2009, 6604; b) Q.-L. Xu, L.-X. Dai, S.-
L. You, Adv. Synth. Catal. 2012, 354, 2275. For decarboxylation: ref. 8c.
[13] W. Chen, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 15249.
[14] C.-G. Yang, N. W. Reich, Z. Shi, C. He, Org. Lett. 2005, 7, 4553.
[15] L. Zhang, C. M. Le, M. Lautens, Angew. Chem. Int. Ed. 2014, 53, 5951.
[16] Preliminary results showed excellent regio- and enantioselectivity but
poor diastereoselectivity for the reaction with unsymmetrical silyl ketene
acetals. For example:
[5]
For selected publications, see: a) C. Gnamm, S. Förster, N. Miller, K.
Brödner, G. Helmchen, Synlett 2007, 790; b) B. M. Trost, J. R. Miller, C.
M. Hoffman, J. Am. Chem. Soc. 2011, 133, 8165; c) W.-B. Liu, C. M.
Reeves, B. M. Stoltz, J. Am. Chem. Soc. 2013, 135, 17298; d) W.-B.
Liu, C. M. Reeves, S. C. Virgil, B. M. Stoltz, J. Am. Chem. Soc. 2013,
135, 10626; e) H. Zhou, L. Zhang, C. Xu, S. Luo, Angew. Chem. Int. Ed.
2015, 54, 12645; f) J. C. Hethcox, S. E. Shockley, B. M. Stoltz, Angew.
Chem. Int. Ed. 2016, 55, 16092.
R
OBz
OTMS
O
R
O
92%, 1.9:1 dr,
>99% ee for
each diastereomer
1o
O
[Ir]-2, nBu4NOBz
condition B
[17] We also tested monosubstituted silyl ketene acetals for this allylaiton
reaction. The reaction of 1o with the silyl ketene acetal of γ-
butyrolactone gave the product in 25% yield with 1.4:1 dr. The bis-
allylation product was formed in 30% yield, which presumably resulted
from the enolization of the product followed by a second allylation.
[6]
For selected publications, see: a) S.-L. You, X.-L. Hou, L.-X. Dai, B.-X.
Cao, J. Sun, Chem. Commun. 2000, 1933; b) B. M. Trost, K. Dogra, J.
Am. Chem. Soc. 2002, 124, 7256; c) T. D. Weiß, G. Helmchen, U.
Kazmaier, Chem. Commun. 2002, 1270; d) T. Kanayama, K. Yoshida,
H. Miyabe, Y. Takemoto, Angew. Chem. Int. Ed. 2003, 42, 2054; e) B.
M. Trost, K. Dogra, M. Franzini, J. Am. Chem. Soc. 2004, 126, 1944; f)
J. Deska, U. Kazmaier, Chem. Eur. J. 2007, 13, 6204; g) W. Chen, J. F.
Hartwig, J. Am. Chem. Soc. 2013, 135, 2068; h) W. Chen, J. F. Hartwig,
J. Am. Chem. Soc. 2014, 136, 377.
R
O
OTMS
R
OBz
1o
bis-allylation
product
+
O
O
[Ir]-2, nBu4NOBz
condition B
30%
25%, 1.4:1 dr
However, the reaction with the silyl ketene acetal of methyl propionate
gave no bis-allylation product. This lack of reaction is presumably
because acyclic esters are less acidic and less prone to enolize than
[7]
[8]
For selected recent pulications, see: a) B. M. Trost, J. T. Masters, A. C.
Burns, Angew. Chem. Int. Ed. 2013, 52, 2260; b) K. J. Schwarz, J. L.
Amos, J. C. Klein, D. T. Do, T. N. Snaddon, J. Am. Chem. Soc. 2016,
138, 5214; c) K. Balaraman, C. Wolf, Angew. Chem. Int. Ed. 2017, 56,
1390; d) X. Jiang, J. J. Beiger, J. F. Hartwig, J. Am. Chem. Soc. 2017,
139, 87.
lactones under the reaction condition.
R
OTMS
R
OBz
COOMe
1o
no
OMe
bis-allylation
product
[Ir]-2, nBu4NOBz
condition B
73%, 1.2:1 dr
For related Pd-catalyzed reactions with symmetrical electrophiles, see:
a) I. Alvarado-Beltrán, E. Maerten, R. A. Toscano, J. G. López-Cortés,
E:Z = 4:1
This article is protected by copyright. All rights reserved.