Organic Letters
Letter
(5) Krautwald, S.; Carreira, E. M. Stereodivergence in Asymmetric
Catalysis. J. Am. Chem. Soc. 2017, 139, 5627−5639.
(6) For examples of stereodivergence regulated at the substrate or
reagent level, see: (a) pseudo-Stereodivergence: Bihani, M.; Zhao, J.
C.-G. Advances in Asymmetric Diastereodivergent Catalysis. Adv.
Synth. Catal. 2017, 359, 534−575. (b) Denmark, S. E. Ghosh, The
First Catalytic, Diastereoselective, and Enantioselective Crossed-Aldol
Reactions of Aldehydes. Angew. Chem., Int. Ed. 2001, 40, 4759−4762.
(c) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K.
Enantiodivergent conversion of chiral secondary alcohols into tertiary
alcohols. Nature 2008, 456, 778−783. (d) Molinaro, C.; Scott, J. P.;
Figure 5. A one-pot enantiodivergent reduction of E-1.
thereby enabling the direct conversion of E-1 to either chiral
antipode. To enable this isomerization/in situ reduction
sequence, a switch in solvent to cyclohexane was required
which enabled access to R-13 in 81% yield (83:17 er).
́
Shevlin, M.; Wise, C.; Menard, A.; Gibb, A.; Junker, E. M.;
Lieberman, D. Catalytic, Asymmetric, and Stereodivergent Synthesis
of Non-Symmetric β,β-Diaryl-α-Amino Acids. J. Am. Chem. Soc. 2015,
137, 999−1106.
Light-enabled enantiodivergent hydrogenation of β-substi-
tuted nitrostyrenes using a single catalyst enantiomer derived
from L-valine is disclosed. Unlike classical enantiodivergent
catalysis strategies that proceed via energetically degenerate
transition states, a bias exists in the diastereomeric transitions
states that manifests itself in selectivity. This allows stereo-
chemical regulation to be achieved via geometric isomerization
of the substrate through an external stimulus, i.e. a photon.
The need for the antipodal H-bonding catalyst derived from D-
valine is mitigated, thus conferring operational simplicity and
reducing catalyst preparation costs. Given the ubiquity of
alkenyl substrates in asymmetric catalysis, manipulating π-bond
configuration by light, prior to stereospecific functionalization,
may constitute an expansive approach to enantiodivergence.
(7) (a) Peters, M. V.; Stoll, R. S.; Kuhn, A.; Hecht, S.
̈
Photoswitching of Basicity. Angew. Chem., Int. Ed. 2008, 47, 5968−
5972. (b) Stoll, R. S.; Hecht, S. Artificial Light-Gated Catalyst
Systems. Angew. Chem., Int. Ed. 2010, 49, 5054−5075. (c) For a
recent example from this laboratory, see: Onneken, C.; Bussmann, K.;
Gilmour, R. Inverting External Asymmetric Induction via Selective
Energy Transfer Catalysis: A Strategy to β-Chiral Phosphonate
(8) For selected examples of metal-catalyzed stereospecific reduction
of α,β-unsaturated sulfones, see: (a) Peters, B.; Zhou, T.;
Rujirawanich, J.; Cadu, A.; Singh, T.; Rabten, W.; Kerdphon, S.;
Andersson, P. G. An Enantioselective Approach to the Preparation of
Chiral Sulfones by Ir-Catalyzed Asymmetric Hydrogenation. J. Am.
Chem. Soc. 2014, 136, 16557−16562. (b) Yan, Q.; Xiao, G.; Wang,
W.; Zi, G.; Zhang, Z.; Hou, G. Highly Efficient Enantioselective
Synthesis of Chiral Sulfones by Rh-Catalyzed Asymmetric Hydro-
genation. J. Am. Chem. Soc. 2019, 141, 1749−1756.
ASSOCIATED CONTENT
* Supporting Information
■
S
Full experimental details and NMR spectra (PDF). The
Supporting Information is available free of charge at https://
(9) (a) Shi, S.-L.; Wong, Z. L.; Buchwald, S. L. Copper-catalyzed
enantioselective stereodivergent synthesis of amino alcohols. Nature
2016, 532, 353−356. (b) Appella, D. H.; Moritani, Y.; Shintani, R.;
Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9473−
9474. (c) Bell, S.; Wustenberg, B.; Kaiser, S.; Menges, F.; Netscher,
̈
AUTHOR INFORMATION
T.; Pfaltz, A. Asymmetric hydrogenation of unfunctionalized, purely
alkyl-substituted olefins. Science 2006, 311, 642−644.
■
Corresponding Author
ORCID
(10) Molloy, J. J.; Morack, T.; Gilmour, R. Positional and
Geometrical Isomerisation of Alkenes: The Pinnacle of Atom
Economy. Angew. Chem., Int. Ed. 2019, 58, 13654−13664.
(11) (a) Singh, K.; Staig, S. J.; Weaver, J. D. Facile Synthesis of Z-
Alkenes via Uphill Catalysis. J. Am. Chem. Soc. 2014, 136, 5275−5278.
(b) Metternich, J. B.; Gilmour, R. A Bio-Inspired, Catalytic E→Z
Isomerization of Activated Olefins. J. Am. Chem. Soc. 2015, 137,
11254−11257. (c) Metternich, J. B.; Gilmour, R. A “One Photo-
catalyst, n Activation Modes” Strategy for Cascade Catalysis:
Emulating Coumarin Biosynthesis with (−)-Riboflavin. J. Am.
Chem. Soc. 2016, 138, 1040−1045. (d) Metternich, J. B.; Artiukhin,
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We acknowledge generous financial support from the WWU
nster and the Alexander von Humboldt Foundation
(Fellowship to J.J.M.).
■
Mu
̈
D. G.; Holland, M. C.; von Bremen-Kuhne, M.; Neugebauer, J.;
̈
Gilmour, R. Photocatalytic E→Z Isomerization of Polarized Alkenes
Inspired by the Visual Cycle: Mechanistic Dichotomy and Origin of
Selectivity. J. Org. Chem. 2017, 82, 9955−9977. (e) Molloy, J. J.;
Metternich, J. B.; Daniliuc, C. G.; Watson, A. J. B.; Gilmour, R.
Contra-Thermodynamic, Photocatalytic E→Z Isomerization of
Styrenyl Boron Species: Vectors to Facilitate Exploration of 2D
Chemical Space. Angew. Chem., Int. Ed. 2018, 57, 3168−3172.
REFERENCES
■
(1) Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: New York, 1999; Vols. I−III, Suppl. I−
II.
(2) (a) Nugent, W. A.; Rajanbabu, T. V.; Burk, M. J. Beyond
(f) Faβbender, S. I.; Molloy, J. J.; Muck-Lichtenfeld, C.; Gilmour, R.
̈
́
Natures Chiral Pool: Enantioselective Catalysis in Industry. Science
Geometric E→Z Isomerisation of Alkenyl Silanes by Selective Energy
Transfer Catalysis: Stereodivergent Synthesis of Triarylethylenes via a
Formal anti-Metallometallation. Angew. Chem., Int. Ed. 2019,
(12) (a) Czekelius, C.; Carreira, E. M. Chiral Nitroalkanes Catalytic
Enantioselective Conjugate Reduction of β, β-Disubstituted Nitro-
alkenes. Angew. Chem., Int. Ed. 2003, 42, 4793−4795. (b) Czekelius,
C.; Carreira, E. M. Convenient Catalytic, Enantioselective Conjugate
Reduction of Nitroalkenes Using CuF2. Org. Lett. 2004, 6, 4575−
1993, 259, 479−483. (b) Hawkins, J. M.; Watson, T. J. N.
Asymmetric Catalysis in the Pharmaceutical Industry. Angew. Chem.,
Int. Ed. 2004, 43, 3224−3228. (c) Shultz, C. S.; Krska, S. W.
Unlocking the Potential of Asymmetric Hydrogenation at Merck. Acc.
Chem. Res. 2007, 40, 1320−1326.
(3) Blaser, H.-U. The Chiral Pool as a Source of Enantioselective
Catalysts and Auxilliaries. Chem. Rev. 1992, 92, 935−952.
(4) Trost, B. M. Asymmetric catalysis: an enabling science. Proc.
Natl. Acad. Sci. U. S. A. 2004, 101, 5348−5355.
D
Org. Lett. XXXX, XXX, XXX−XXX