Journal of the American Chemical Society
Page 14 of 15
(1) (a) Bull, S. D.; Davies, S. G.; Parkin, R. M.; Sancho, F. S. J.
CONCLUSION
Chem. Soc., Perkin Trans. 1 1998, 2313–2319. (b) Ding, G.; Jiang, L.;
Guo, L.; Chen, X.; Zhang, H.; Che, Y. J. Nat. Prod. 2008, 71, 1861–
1865. (c) Kamei, H.; Oka, M.; Hamagishi, Y.; Tomita, K.; Komishi,
M.; Oki, T. J. Antibiot. 1990, 43, 1018–1020. (d) Huang, R.; Zhou,
X.; Xu, T.; Yang, X.; Liu, Y. Chem. Biodiv. 2010, 7, 2809–2829. (e)
Cornacchia, C.; Cacciatore, I.; Baldassarre, L.; Mollica, A.; Feliciani,
F.; Pinnen, F. Mini-Rev. Med. Chem. 2012, 12, 2–12. (f) Borthwick,
A. D. Chem. Rev. 2012, 112, 3641–3716.
(2) Ressurreicao, A. S. M.; Delatouche, R.; Gennari, C.; Piarulli,
U. Eur. J. Org. Chem. 2011, 217–228.
(3) Stepan, A. F. et al. J. Med. Chem. 2012, 55, 3414–3424, and
references cited therein.
1
2
3
4
5
6
7
8
An improved method for the sulfenylation of 2,5-
diketopiperazines based on the use of alkali metal hexame-
thyldisilazide bases (i.e. NaHMDS, LiHMDS and KHMDS)
and sulfur (S8) in THF at 25 °C as a means to prepare epidi-
thio-, epitetrathio- and bis-(methylthio)diketopiperazines has
been developed. A second method involving the use of
bis[bis(trimethylsilyl)amino]trisulfide
[(TMS)2NSSSN(TMS)2] and NaHMDS for the direct prepara-
tion of epidithio- and epitetrathiodiketopiperazines has also
been developed.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Application of these methods led to the synthesis of an array
of sulfenylated diketopiperazine systems, including the natural
products epiccocin G (1), gliotoxin (3), gliotoxin G (4), eme-
thallicin E (5), haematocin (6) and the 8,8ʹ-epi-ent-isomer (2)
of rostratin B. With the exception of gliotoxin (3),6h these
accomplishments represent the first enantioselective total
syntheses of these natural products and their analogs and fea-
ture a number of novel synthetic strategies and reactions,
including the [2+2] photooxygenation and the rarely used
Kornblum–DeLaMare rearrangement.
Biological investigations of selected members of the synthe-
sized compound libraries led to the discovery of a number of
potent anti poliovirus agents (i.e. 46, 2,2ʹ-epi-46 and 61) and a
series of anti Plasmodium falciparum lead compounds (i.e. 46,
2,2ʹ-epi-46, 58, 61 and 1) that may facilitate biological inves-
tigations and drug discovery efforts in the antiviral and anti-
malarial areas, respectively.
(4) (a) Gardiner, M. D.; Waring, P.; Howlett, B. J. Microbiol. 2005,
151, 1021–1032. (b) Rezanka, T.; Sobotka, M.; Spizek, J.; Sigler, K.
Anti-infect. Agents Med. Chem. 2006, 5, 187–224. (c) Greiner, D.;
Bonaldi, T.; Eskeland, R.; Roemer, R.; Imhof, A. Nat. Chem. Biol.
2005, 1, 143–145. (d) Isham, C. R.; Tibodeau, J. D.; Jin, W.; Xu, R.;
Timm, M. M.; Bibblel, K. C. Blood 2007, 109, 2579–2588. (e) Jiang,
C.-S.; Müller, W. E. G.; Schröder, H. C.; Guo, Y.-W.; Chem. Rev.
2012, 112, 2179–2207. (f) Waring, P.; Eichner, R. D.; Müllbacher, A.
Med. Res. Rev. 1988, 8, 499–524. (g) Waring, P.; Beaver, J. Gen.
Pharmacol. 1996, 27, 1311–1316.
(5) Iwasa, E.; Hamashima, Y.; Sodeoka, M. Isr. J. Chem. 2011, 51,
420–433.
(6) For selected epidithiodiketopiperazine total syntheses, see: (a)
Williams, R. M.; Rastetter, W. H. J. Org. Chem. 1980, 45,
2625−2631. (b) Wu, Z.; Williams, L. J.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2000, 39, 3866−3868. (c) DeLorbe, J. E.; Salman, Y.
J.; Mennen, S. M.; Overman, L. E.; Zhang, F. J. Am. Chem. Soc.
2011, 133, 6549–6552. (d) Boyer, N.; Movassaghi, M. Chem. Sci.
2012, 3, 1798–1803. (e) Kim, J; Ashenhurst, J. A., Movassaghi, M.
Science 2009, 324, 238–241. (f) Iwasa, E.; Hamashima, Y; Fujishiro,
S.; Higuchi, E.; Ito, A.; Yoshida, M.; Sodeoka, M. J. Am. Chem. Soc.
2010, 132, 4078–4079. (g) Kim, J.; Movassaghi, M. J. Am. Chem.
Soc. 2010, 132, 14376–14378. (h) Fukuyama, T.; Nakatsuka, S.;
Kishi, Y. Tetrahedron 1981, 37, 2045–2078. (i) Fukuyama, T.; Kishi,
Y. J. Am. Chem. Soc. 1976, 98, 6723–6724.
(7) Nicolaou, K. C.; Giguère, D.; Totokotsopoulos, S.; Sun Y.;
Angew. Chem., Int. Ed. 2012, 51, 728–732.
(8) Nicolaou, K. C.; Totokotsopoulos, S.; Giguère, D.; Sun, Y.;
Sarlah, D. J. Am. Chem. Soc. 2011, 133, 8150–8153.
(9) (a) Guo, H.; Sun, B.; Gao, H.; Chen, X.; Liu, S.; Yao, X.; Liu,
X.; Che, Y. J. Nat. Prod. 2009, 72, 2115–2119. (b) Wang, J.-M.;
Ding, G.-Z.; Fang, L.; Dai, J.-G.; Yu, S.-S.; Wang, Y.-H.; Chen, X.-
G.; Ma, S.-G.; Qu, J.; Xu, S.; Du, D. J. Nat. Prod. 2010, 73, 1240–
1249.
By blending total synthesis of natural products of biological
and medical interest with method development endeavors and
chemical biology studies, the work described herein exempli-
fies the modern paradigm of natural product synthesis and
underscores its relevance and importance to chemistry, biolo-
gy and medicine.
ASSOCIATED CONTENT
Supporting Information. Experimental procedures and charac-
terization data for key compounds (pdf cif files). This material is
AUTHOR INFORMATION
(10) Tan, R. X.; Jensen, P. R.; Williams, P. G.; Fenical, W. J. Nat.
Prod. 2004, 67, 1374–1382.
Corresponding Author
(11) (a) Weindling, R.; Emerson, O. H. Phytopathol. 1936, 26,
1068–1070. (b) Johnson, J. R.; Bruce, W. F.; Dutcher, J. D. J. Am.
Chem. Soc. 1943, 65, 2005–2009. (c) Beecham, A. F.; Fridrichsons,
J.; Mathieson, A. McL. Tetrahedron Lett. 1966, 27, 3131–3138.
(12) Waring, P.; Eichner, R. D.; Palni, U. T.; Müllbacher, A. Te-
trahedron Lett. 1986, 27, 735–738.
(13) Kawahara, N.; Nozawa, K.; Yamazaki, M.; Nakajima, S.; Ka-
wai, K. Heterocycles 1990, 30, 507–515.
(14) Suzuki, Y.; Takahashi, H.; Esumi, Y.; Arie, T.; Morita, T.;
Koshino, H.; Uzawa, J.; Uramoto, M.; Yamaguchi, I. J. Antibiot.
2000, 53, 45–49.
(15) Nagarajan, R.; Huckstep, L. L.; Lively, D. H.; DeLong, D. C.;
Marsh, M. M.; Neuss, N. J. Am. Chem. Soc. 1968, 90, 2980–2982.
(16) For a total synthesis of acetylaranotin, see: Codelli, J. A.; Pu-
chlopek, A. L. A.; Reisman, S. E. J. Am. Chem. Soc. 2012, 134,
1930–1933.
(17) Trown, P. W. Biochem. Biophys. Res. Commun. 1968, 33,
402–407.
(18) Shimazaki, N.; Shima, I.; Hemmi, K.; Tsurumi, Y.; Hashimo-
to, M. Chem. Pharm. Bull. 1986, 35, 3527–3530.
Funding Sources
K.C.N. acknowledges funding from the National Institute of
Health (USA) (grant nos. AI055475 and CA100101), as well as
fellowships from Fonds de Recherche Québec (to D. G.), Bristol-
Myers Squibb (to D. S.) and The Skaggs Research Institute. This
project was funded in part for D.F.S. from the Division of Micro-
biology and Infectious Diseases, National Institute of Allergy and
Infectious Diseases, National Institute of Health (USA), Depart-
ment of Health and Human Services, under Contract No.
HHSN272201100019I/HHSN27200001/B01., and for E.A.W. by
the National Institute of Health (USA) (grant no. R01 AI090141).
ACKNOWLEDGMENT
We thank Drs. D. H. Huang and L. Pasternack for NMR spectro-
scopic, Dr. G. Siuzdak for mass spectrometric, and Dr. R. K.
Chadha for X-ray crystallographic assistance.
REFERENCES
ACS Paragon Plus Environment