26
K. Abdi et al. / Journal of Photochemistry and Photobiology B: Biology 107 (2012) 20–26
[18] S. Hamdani, D. Joly, R. Carpentier, H.A. Tajmir-Riahi, The effect of methylamine
Acknowledgements
on the solution structures of human and bovine serum albumins, J. Mol. Struct.
936 (2009) 80–86.
This work was supported by a research grants from center of
excellence of medicinal chemistry, Tehran University of Medical
Sciences. We thank, Ms. Shoukofeh Hassani (Lab Supervisor) for
allowing us to use their lab facilities.
[19] P.N. Naik, S.A. Chimatadar, S.T. Nandibewoor, Interaction between a potent
corticosteroid drug – dexamethasone with bovine serum albumin and human
serum albumin: a fluorescence quenching and fourier transformation infrared
spectroscopy study, J. Photochem. Photobiol. B 100 (2010) 147–159.
[20] S. Dubeau, P. Bourassa, T.J. Thomas, H.A. Tajmir-Riahi, Biogenic and synthetic
polyamines bind bovine serum albumin, Biomacromolecules 11 (2010) 1507–
1515.
[21] L. Painter, M.M. Harding, P.J. Beeby, Synthesis and interaction with human
serum albumin of the first 3, 18-disubstituted derivative of bilirubin, J. Chem.
Soc., Perkin Trans. 1 (1998) 3041–3044.
References
[22] S.Y. Lin, M.J. Li, Y.S. Wei, Ethanol or/and captopril-induced precipitation and
secondary conformational changes of human serum albumin, Spectrochim.
Acta A, Mol. Biomol. Spectrosc. 60 (2004) 3107–3111.
[23] F. Dousseau, M. Therrien, M. Pézolet, On the spectral subtraction of water from
the FT-IR spectra of aqueous solutions of proteins, Appl. Spectrosc. 43 (1989)
538–542.
[24] D.M. Byler, H. Susi, Examination of the secondary structure of proteins by
deconvolved FTIR spectra, Biopolymers 25 (1986) 469–487.
[25] R. Beauchemin, C.N. N’Soukpoe-Kossi, T.J. Thomas, T. Thomas, R. Carpentier,
H.A. Tajmir-Riahi, Polyamine analogues bind human serum albumin,
Biomacromolecules 8 (2007) 3177–3183.
[26] A. Ahmed-Ouameur, H.A. Tajmir-Riahi, R. Carpentier, A quantitative secondary
structure analysis of the 33 kDa extrinsic polypeptide of photosystem II by
FTIR spectroscopy, FEBS Lett. 363 (1995) 65–68.
[27] K. Connors, Binding Constants: The measurement of Molecular Complex
Stability, John Wiley & Sons, New York, 1987.
[28] K. Arnold, L. Bordoli, J. Kopp, T. Schwede, The SWISS-MODEL workspace: a
web-based environment for protein structure homology modelling,
Bioinformatics 22 (2006) 195–201.
[29] B. Rost, Twilight zone of protein sequence alignments, Prot. Eng. 12 (1999) 85–
94.
[1] G.J. Peters, H.H. Backus, S. Freemantle, B. van Triest, G. Codacci-Pisanelli, C.L.
van der Wilt, K. Smid, J. Lunec, A.H. Calvert, S. Marsh, H.L. McLeod, E. Bloemena,
S. Meijer, G. Jansen, C.J. van Groeningen, H.M. Pinedo, Induction of thymidylate
synthase as a 5-fluorouracil resistance mechanism, Biochim. Biophys. Acta
1587 (2002) 194–205.
[2] K.H. Elstein, M.L. Mole, R.W. Setzer, R.M. Zucker, R.J. Kavlock, J.M. Rogers, C.
Lau, Nucleoside-mediated mitigation of 5-fluorouracil-induced toxicity in
synchronized murine erythroleukemic cells, Toxicol. Appl. Pharmacol. 146
(1997) 29–39.
[3] K. Ghoshal, S.T. Jacob, An alternative molecular mechanism of action of
5-fluorouracil,
1569–1575.
a potent anticancer drug, Biochem. Pharmacol. 53 (1997)
[4] E. Ojima, Y. Inoue, H. Watanabe, J. Hiro, Y. Toiyama, C. Miki, M. Kusunoki, The
optimal schedule for 5-fluorouracil radiosensitization in colon cancer cell lines,
Oncol. Rep. 16 (2006) 1085–1091.
[5] M. Malet-Martino, R. Martino, Clinical studies of three oral prodrugs of
5-fluorouracil (capecitabine, UFT, S-1): a review, Oncologist 7 (2002) 288–323.
[6] J.E. Biaglow, M.E. Varnes, L. Roizen-Towle, E.P. Clark, E.R. Epp, M.B. Astor, E.J.
Hall, Biochemistry of reduction of nitro heterocycles, Biochem. Pharmacol. 35
(1986) 77–90.
[7] P. Mason, J.L. Holtzman, The role of catalytic superoxide formation in the O2
inhibition of nitroreductase, Biochem. Biophys. Res. Commun. 67 (1975) 1267–
1275.
[8] P. Wardman, Eric. D-Clarke, Oxygen inhibition of nitroreductase: electron
transfer from nitro radical-anions to oxygen, Biochem. Biophys. Res. Commun.
69 (1976) 942–949.
[30] S. Sugio, A. Kashima, S. Mochizuki, M. Noda, K. Kobayashi, Crystal structure of
human serum albumin at 2.5 A resolution, Prot. Eng. 12 (1999) 439–446.
[31] T. Schwede, J. Kopp, N. Guex, M.C. Peitsch, SWISS-MODEL: an automated
protein homology-modeling server, Nucl. Acids. Res. 31 (2003) 3381–3385.
[32] F.J. Solis, R.J.-B. Wets, Minimization by random search techniques, Math. Oper.
Res. 6 (1981) 19–30.
[9] P. Wardman, Some reactions and properties of nitro radical-anions important
in biology and medicine, Environ. Health Perspect. 64 (1985) 309–320.
[10] A. Khalaj, A.R. Doroudi, S.N. Ostad, M.R. Khoshayand, M. Babai, N. Adibpour,
Synthesis, aerobic cytotoxicity, and radiosensitizing activity of novel 2,4-
dinitrophenylamine tethered 5-fluorouracil and hydroxyurea, Bioorg. Med.
Chem. Lett. 16 (2006) 6034–6038.
[11] B.D. Palmer, W.R. Wilson, S.M. Pullen, W.A. Denny, Hypoxia-selective
antitumor agents. 3. Relationships between structure and cytotoxicity
against cultured tumor cells for substituted N, N-bis(2-chloroethyl)anilines,
J. Med. Chem. 33 (1990) 112–121.
[12] B.D. Palmer, W.R. Wilson, S. Cliff, W.A. Denny, Hypoxia-selective antitumor
agents. 5. Synthesis of water-soluble nitroaniline mustards with selective
cytotoxicity for hypoxic mammalian cells, J. Med. Chem. 35 (1992) 3214–
3222.
[13] D.F. Lewis, Molecular orbital calculations on tumour-inhibitory aniline
mustards: QSARs, Xenobiotica 19 (1989) 243–251.
[14] P.G. Gill, J.W. Denham, G.G. Jamieson, P.G. Devitt, E. Yeoh, C. Olweny, Patterns
of treatment failure and prognostic factors associated with the treatment of
esophageal carcinoma with chemotherapy and radiotherapy either as sole
treatment or followed by surgery, J. Clin. Oncol. 10 (1992) 1037–1043.
[15] D.C. Carter, J.X. Ho, Structure of serum albumin, Adv. Prot. Chem. 45 (1994)
153–203.
[16] T. Peters, All about Albumin: Biochemistry, Genetics, and Medical Applica-
tions, Academic Press, Berlin, 1996.
[17] X.M. He, D.C. Carter, Atomic structure and chemistry of human serum albumin,
Nature 358 (1992) 209–215.
[33] H.I. Ali, T. Fujita, E. Akaho, T. Nagamatsu, A comparative study of AutoDock and
PMF scoring performances, and SAR of 2-substituted pyrazolotriazolo-
pyrimidines and 4-substituted pyrazolopyrimidines as potent xanthine
oxidase inhibitors, J. Comput. Aid. Mol. Des. 24 (2010) 57–75.
[34] S. Krimm, J. Bandekar, Vibrational spectroscopy and conformation of peptides,
polypeptides, and proteins, Adv. Prot. Chem. 38 (1986) 181–364.
[35] A. Ahmed-Ouameur, S. Diamantoglou, M.R. Sedaghat-Herati, S. Nafisi, R.
Carpentier, H.A. Tajmir-Riahi, The effects of drug complexation on the stability
and conformation of human serum albumin: protein unfolding, Cell Biochem.
Biophys. 45 (2006) 203–214.
[36] P. Bourassa, C.D. Kanakis, P. Tarantilis, M.G. Pollissiou, H.A. Tajmir-Riahi,
Resveratrol, genistein, and curcumin bind bovine serum albumin (dagger), J.
Phys. Chem. B 114 (2010) 3348–3354.
[37] J. Tian, J. Liu, Z. Hu, X. Chen, Interaction of wogonin with bovine serum
albumin, Bioorg. Med. Chem. 13 (2005) 4124–4129.
[38] J. Grdadolnik, Saturation effects in FTIR spectroscopy: intensity of amide I and
amide II bands in protein spectra, Acta Chim. Slov. 50 (2003) 777–788.
[39] P. Bourassa, S. Dubeau, G.M. Maharvi, A.H. Fauq, T.J. Thomas, H.A. Tajmir-Riahi,
Locating the binding sites of anticancer tamoxifen and its metabolites 4-
hydroxytamoxifen and endoxifen on bovine serum albumin, Eur. J. Med. Chem.
46 (2011) 4344–4353.
[40] J. Liu, J. Tian, Z. Hu, Binding of isofraxidin to bovine serum albumin,
Biopolymers 73 (2004) 443–450.
[41] U. Kragh-Hansen, Structure and ligand binding properties of human serum
albumin, Dan. Med. Bull. 37 (1990) 57–84.