Mendeleev Commun., 2019, 29, 138–139
Pyrrole reacted with trans-b-nitrostyrene to form mono- and
References
dialkylation products regardless of the trans-b-nitrostyrene–
pyrrole ratio, therefore, excess of pyrrole was used to maximize
the conversion of the trans-b-nitrostyrene (Scheme 3). Product 5
was successfully chromatographically separated from the mixture
of isomeric disubstuituted pyrroles dl-6 and meso-6, their yields
being 43 and 31%, respectively. In the case of N-methylpyrrole,
a mixture of mono- and dialkylation products was also formed,
however this mixture could not be separated by column chromato-
graphy.
1 N. Ono, The Nitro Group in Organic Synthesis, Wiley, Weinheim, 2001.
2 H. M. Meshram, D. A. Kumar and B. C. Reddy, Helv. Chim. Acta, 2009,
92, 1002.
3 W.-J. Li, Catal. Commun., 2014, 52, 53.
4 A. Mane, T. Lohar and R. Salunkhe, Tetrahedron Lett., 2016, 57, 2341.
5 A. Izaga, R. P. Herrera and M. C. Gimeno, ChemCatChem, 2017, 9, 1313.
6 R. C. da Silva, G. P. da Silva, D. P. Sangi, J. G. de M. Pontes,A. G. Ferreira,
A. G. Corrêa and M. W. Paixão, Tetrahedron, 2013, 69, 9007.
7 C. M. McGuirk, M. J. Katz, C. L. Stern, A. A. Sarjeant, J. T. Hupp,
O. K. Farha and C. A. Mirkin, J. Am. Chem. Soc., 2015, 137, 919.
8 P. C. Rao and S. Mandal, ChemCatChem, 2017, 9, 1172.
9 K. Moriyama, T. Sugiue, Y. Saito, S. Katsuta and H. Togo, Adv. Synth.
Catal., 2015, 357, 2143.
10 S. S. So, J. A. Burkett and A. E. Mattson, Org. Lett., 2011, 13, 716.
11 Y. Fan and S. R. Kass, J. Org. Chem., 2017, 82, 13288.
12 J.-Q. Weng, Q.-M. Deng, L. Wu, K. Xu, H. Wu, R.-R. Liu, J.-R. Gao and
Y.-X. Jia, Org. Lett., 2014, 16, 776.
NO2
NO2
i
O2N
+
+
2a
N
N
N
H
H
Ph
H
Ph
Ph
5
43%
dl-6 + meso-6
31%
13 K. Huang, Q. Ma, X. Shen, L. Gong and E. Meggers, Asian J. Org. Chem.,
2016, 5, 1198.
Scheme 3 Reagents and conditions: i, pyrrole (0.5 mmol), 2a (0.25 mmol),
MgI2 (0.025 mmol), CH2Cl2 (0.5 ml), 20°C, 24 h.
14 C. Despotopoulou, S. C. McKeon, R. Connon,V. Coeffard, H. Müller-Bunz
and P. J. Guiry, Eur. J. Org. Chem., 2017, 6734.
15 S. O’Reilly, M.Aylward, C. Keogh-Hansen, B. Fitzpatrick, H.A. McManus,
H. Müller-Bunz and P. J. Guiry, J. Org. Chem., 2015, 80, 10177.
16 A. Scherer, T. Mukherjee, F. Hampel and J. A. Gladysz, Organometallics,
2014, 33, 6709.
17 J. Liu, L. Gong and E. Meggers, Tetrahedron Lett., 2015, 56, 4653.
18 M. Turks, E. Rolava, D. Stepanovs, A. Mishnev and D. Markovic´,
Tetrahedron: Asymmetry, 2015, 26, 952.
We also found that another electron deficient alkene, ethyl
(Z)-3-nitro-2-phenylacrylate 2b, did not react with 1,3-dimethoxy-
benzene, 1,3,5-trimethoxybenzene or 2-methylfuran even within
48 h. However, with Ca(NTf2)2 as the catalyst, N,N-diethylaniline
formed the addition product 7a in 37% yield in 48 h (Scheme 4).
The addition products of pyrrole and N-methylpyrrole 7b and 7c
were obtained in 81 and 66% yields, respectively. Polyalkylation
products were not detected even in trace amounts. This is the
first example of the addition of the aromatic compounds other
than indole to ethyl (Z)-3-nitro-2-phenylacrylate.
19 N. Li, R. Qiu, X. Zhang, Y. Chen, S.-F. Yin and X. Xu, Tetrahedron,
2015, 71, 4275.
20 G. V. More and B. M. Bhanage, Catal. Sci. Technol., 2015, 5, 1514.
21 T.-N. Le, P. Diter, B. Pégot, C. Bournaud, M. Toffano, R. Guillot,
G. Vo-Thanh, Y. Yagupolskii and E. Magnier, J. Fluorine Chem., 2015,
179, 179.
22 J. Ma and S. R. Kass, Org. Lett., 2016, 18, 5812.
23 T. Arai, A. Awata, M. Wasai, N. Yokoyama and H. Masu, J. Org. Chem.,
2011, 76, 5450.
CO2Et
NO2
EtO2C
NO2
i
ArH
+
Ph
Ph
24 F. Guo, D. Chang, G. Lai, T. Zhu, S. Xiong, S. Wang and Z. Wang, Chem.
Ar
Eur. J., 2011, 17, 11127.
3h Ar = indol-3-yl (90%)
2b
25 A. K. Chittoory, G. Kumari, S. Mohapatra, P. P. Kundu, T. K. Maji,
C. Narayana and S. Rajaram, Tetrahedron, 2014, 70, 3459.
26 G. Zhang, Org. Biomol. Chem., 2012, 10, 2534.
27 A. Z. Halimehjani, M. V. Farvardin, H. P. Zanussi, M. A. Ranjbari and
M. Fattahi, J. Mol. Catal. A: Chem., 2014, 381, 21.
7a Ar = 4-Et2NC6H4 (37%)
7b Ar = pyrrol-2-yl (81%)
7c Ar = 1-methylpyrrol-2-yl (66%)
Scheme 4 Reagents and conditions: i, (het)arene (0.5 mmol), 2b (0.25 mmol),
Ca(NTf2)2 (0.025 mmol), CHCl3 (0.5 ml), 20°C, 24 h.
28 M. J. Stoermer, H. M. Richter and D. E. Kaufmann, Tetrahedron Lett.,
2013, 54, 6776.
29 X. Han, C. Ye, F. Chen, Q. Chen, Y. Wang and X. Zeng, Org. Biomol.
Chem., 2017, 15, 3401.
In conclusion, the Friedel–Crafts reaction of electron-rich (het)-
arenes with trans-b-nitrostyrene and ethyl (Z)-3-nitro-2-phenyl-
acrylate was studied. The MgI2-catalyzed addition of substituted
indoles to trans-b-nitrostyrene has been developed, this process
affords high yields of the target products (up to 94%). For the
first time, Lewis acid-catalyzed Friedel–Crafts addition of benzenes
with electron donor substituents was accomplished in the presence
of MgI2 for trans-b-nitrostyrene and in the presence of Ca(NTf2)2
for ethyl (Z)-3-nitro-2-phenylacrylate. This procedure can be
extended to the derivatives of 5-membered heterocycles, which
can be synthesized in 44–81% yields. The method is very simple as
all reactions were performed at room temperature under ambient
atmosphere, solvents were used as purchased without special
purification.
30 D. Carmona, M. P. Lamata,A. Sánchez, F.Viguri and L.A. Oro, Tetrahedron
:
Asymmetry, 2011, 22, 893.
31 N. T. Tran, S. O. Wilson and A. K. Franz, Org. Lett., 2012, 14, 186.
32 C. Jarava-Barrera, F. Esteban, C. Navarro-Ranninger, A. Parra and
J. Alemán, Chem. Commun., 2013, 49, 2001.
33 A. S. Aldoshin, A. A. Tabolin, S. L. Ioffe and V. G. Nenajdenko, Eur. J.
Org. Chem., 2018, 3816.
34 M. N. Feofanov, M. V. Anokhin, A. D. Averin and I. P. Beletskaya,
Synthesis, 2017, 49, 5045.
35 M. V. Anokhin, M. N. Feofanov, A. D. Averin and I. P. Beletskaya,
ChemistrySelect, 2018, 3, 1388.
36 M. N. Feofanov, B. A. Lozhkin, M. V. Anokhin, A. D. Averin and
I. P. Beletskaya, Mendeleev Commun., 2018, 28, 429.
This work was supported by the Russian Science Foundation
(grant no. 14-23-00186P).
Online Supplementary Materials
Supplementary data associated with this article (experimental
details, 1H and 13C NMR spectra of compounds) can be found in
the online version at doi: 10.1016/j.mencom.2019.03.005.
Received: 3rd October 2018; Com. 18/5706
– 139 –