Journal of the American Chemical Society
Article
Synthesis of 14a. An oven-dried reaction tube equipped with a stir
bar was charged with palladium dibenzylideneacetone−chloroform
complex (4 mg, 0.004 mmol) and (S,S)-L1 chiral ligand (8 mg, 0.010
mmol). A second reaction tube, also equipped with a stir bar, was
charged with bis(2,2,2-trifluoroethyl) 2-vinylcyclopropane-1,1-dicar-
boxylate (40 mg, 0.12 mmol) and (Z)-4-benzylidene-2-phenyloxazol-
5(4H)-one 13a (40 mg, 0.160 mmol). Both tubes were sealed with a
septum, evacuated, and backfilled with dry nitrogen. Toluene
(degassed by sparging with nitrogen for 30 min, 1 mL) was added
to each tube, and the tubes were for stirred 20 min. The contents of
the first reaction tube were transferred to the second test tube via
syringe, and the mixture was stirred at room temperature for 16 h. The
solvent was removed in vacuo to give the crude product, which was
purified by flash column chromatography (5−10% diethyl ether in
petroleum ether) to give the title compound 14a as a colorless oil (45
mg, 0.079 mmol, 66%), as a 19:1 mixture of diastereomers (by crude
1H NMR), and with a 96% e.e. for the major diastereomer (by chiral
HPLC, Chiralpak OD-H column, 5% isopropanol, 95% heptanes, UV
wavelength 254 nm; retention times: 5.74 min (major enantiomer),
(3) Trost, B. M. Science 1991, 254, 1471−1477.
(4) For a review of asymmetric 1,3-dipolar cycloadditions, see:
Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863−909.
(5) For an early review of the use of trimethylenemethane, see: Trost,
B. M. Angew. Chem., Int. Ed. Engl. 1986, 25, 1−20.
(6) (a) Trost, B. M.; Lam, T. M. J. Am. Chem. Soc. 2012, 134,
11319−11321. (b) Trost, B. M.; Bringley, D. A.; Silverman, S. M. J.
Am. Chem. Soc. 2011, 133, 19483−19497. (c) Trost, B. M.; Silverman,
S. M. J. Am. Chem. Soc. 2010, 132, 8238−8240. (d) Trost, B. M.;
Silverman, S. M.; Stambuli, J. P. J. Am. Chem. Soc. 2007, 129, 12398−
12399. (e) Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem.
Soc. 2007, 129, 12396−12397. (f) Trost, B. M.; Stambuli, J. P.;
Silverman, S. M. J. Am. Chem. Soc. 2006, 128, 13328−13329.
(7) For recent reviews on donor−acceptor cyclopropanes and their
use in transition metal chemistry and total synthesis, see: (a) Reissig,
H. U.; Zimmer, R. Chem. Rev. 2003, 103, 1151−1196. (b) Yu, M.;
Pagenkopf, B. L. Tetrahedron 2005, 61, 321−347. (c) Rubin, M.;
Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117−3179.
(d) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051−3060.
(e) Lebold, T. P.; Kerr, M. A. Pure Appl. Chem. 2010, 82, 1797−1812.
(f) De Simone, F.; Waser, J. Synthesis 2009, 20, 3353−3374.
(8) For selected examples, see: (a) Danishefsky, S.; Rovnyak, G. J.
Org. Chem. 1975, 40, 114−115. (b) Berkowitz, W. F.; Grenetz, S. C. J.
Org. Chem. 1976, 41, 10−13. (c) More recently, photocatalysis has
also been used to achieve formal [3 + 2]-cycloaddition of donor−
acceptor cyclopropanes using [Ru(bpz)3](PF6)2·2H2O: Maity, S.; Zhu,
M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222−
226 (for a related example using a photocatalyst in conjunction with a
Lewis acid, see ref 9j).
1
7.30 min (minor enantiomer)). H NMR (500 MHz, CDCl3): δ =
7.89 (dd, J = 8.5, 1.5 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.43 (t, J = 8.0
Hz, 2H), 7.36 (m, 2H), 7.22 (m, 3H), 5.79 (ddd, J = 17.5, 10.5, 8.0
Hz, 1H), 5.23 (d, J = 17.5 Hz, 1H), 5.21 (d, J = 10.5 Hz, 1H), 4.78 (s,
1H), 4.66 (dq, J = 12.5, 8.0 Hz, 1H), 4.43 (dq, J = 12.5, 8.0 Hz, 1H),
4.40 (dq, J = 12.5, 8.0 Hz, 1H), 3.66 (ddd, J = 9.5, 8.0, 6.5 Hz, 1H),
3.41 (dq, J = 12.5, 8.0 Hz, 1H), 3.19 (dd, J = 13.5, 6.5 Hz, 1H), 2.51
(dd, J = 13.5, 9.5 Hz, 1H). 13C NMR (125 MHz, CDCl3): δ = 178.6,
169.1, 168.1, 160.3, 136.4, 134.0, 133.3, 133.1, 131.2, 128.9, 128.3,
128.1, 125.7, 122.7 (q, JC−F = 276 Hz), 122.4 (q, JC−F = 276 Hz),
120.5, 91.2, 80.3, 78.6, 65.1, 61.7 (q, JC−F = 36 Hz), 61.5 (q, JC−F = 37
Hz), 58.1, 53.4, 38.0. 19F NMR (376 MHz, CDCl3): δ = −74.20 to
−74.24 (m, 3F), −74.30 to −74.35 (m, 3F). IR (cm−1): 2965, 1812,
1752, 1652, 1495, 1451, 1413, 1283, 1236, 1168, 871, 697. HRMS
(ESI+): observed 570.1336; calculated 570.1351 (C27H22F6NO6 [M +
(9) Selected examples of the use of Lewis acids to activate donor−
acceptor cyclopropanes for carbocycle synthesis, TiCl4: (a) Saigo, K.;
Shimada, S.; Shibasaki, T.; Hasegawa, M. Chem. Lett. 1990, 1093−
1096. (b) Yadav, V. K.; Sriramurthy, V. Angew. Chem., Int. Ed. 2004,
43, 2669−2671. SnCl4: (c) Komatsu, M.; Suehiro, I.; Horiguchi, Y.;
Kuwajima, I. Synlett 1991, 771−773. (d) de Nanteuil, F.; Waser, J.
Angew. Chem., Int. Ed. 2011, 50, 12075−12079. Me2AlCl:
(e) Horiguchi, Y.; Suehiro, I.; Sasaki, A.; Kuwajima, I. Tetrahedron
Lett. 1993, 34, 6077−6080. EtAlCl2: (f) Beal, R. B.; Dombroski, M.
A.; Snider, B. B. J. Org. Chem. 1986, 51, 4391−4399. TMSOTf:
(g) Sugita, Y.; Kawai, K.; Osoya, H.; Yokoe, I. Heterocycles 1999, 51,
2029−2033. Yt(OTf)3: (h) England, D. B.; Kuss, T. D. O.; Keddy, R.
G.; Kerr, M. A. J. Org. Chem. 2001, 66, 4704−4709. Enantioselective
using MgBr2: (i) Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009,
131, 3122−3123. Photocatalytic using Ru(bpy)3Cl2 and stoichio-
metric La(OTf)3 as Lewis acid: (j) Lu, Z.; Shen, M.; Yoon, T. J. Am.
Chem. Soc. 2011, 133, 1162−1164.
H]+); [α]23 = +15.61° (c = 1.0, CH2Cl2).
D
ASSOCIATED CONTENT
* Supporting Information
■
S
Full experimental procedures and spectral data for all new
compounds, as well as crystallographic data for cycloadducts 5c
and derivative 15. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
■
(10) (a) Shimizu, I.; Ohashi, Y.; Tsuji, J. Tetrahedron Lett. 1982, 23,
3825−3828. (b) Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org.
Lett. 2008, 10, 2541−2544.
Notes
The authors declare no competing financial interest.
(11) (a) For an elegant example of the use of nickel(0) catalysis in
an enantiospecific synthesis of dihydrofurans from vinylcyclopropanes,
see: Bowman, R. K.; Johnson, J. S. Org. Lett. 2006, 8, 573−576. (b)
For a highly diastereoselective nickel-catalyzed reaction of donor−
acceptor cyclopropanes with enones and enals, see: Liu, L.;
Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348−5349.
ACKNOWLEDGMENTS
■
This work has been supported by the National Science
Foundation and the National Institutes of Health
(GM033049). AstraZeneca, the US−UK Fulbright Commis-
sion, and the Lindemann Trust are gratefully acknowledged for
funding (to S.J.S.). We also thank Johnson Matthey for the gift
of palladium salts and Dr. Allen Oliver of Notre Dame
University for X-ray crystallography.
(12) Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc.
2012, 134, 5048−5051.
(13) Moran, J.; Smith, A. G.; Carris, R. M.; Johnson, J. S.; Krische, M.
J. J. Am. Chem. Soc. 2011, 133, 18618−18621.
(14) Yu and co-workers have invoked a π-allyl-Rh intermediate in the
intramolecular formal [3 + 2]-cycloaddition reaction of (nondonor−
acceptor) vinylcyclopropanes with alkenes, alkynes and allenes, see:
(a) Jiao, L.; Lin, M.; Zhuo, L.-G.; Yu, Z.-X. Org. Lett. 2010, 12, 2528−
2531. (b) Jiao, L.; Lin, M.; Yu, Z.-X. Chem. Commun. 2010, 46, 1059−
1061. (c) Li, Q.; Jiang, Q.-J.; Jiao, L.; Yu, Z.-X. Org. Lett. 2010, 12,
1332−1335. (d) Jiao, L.; Ye, S.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 131,
7178−7179.
REFERENCES
■
(1) For a review of the preparation of functionalized cyclopentanes
and their application in total synthesis, see: Heasley, B. Eur. J. Org.
Chem. 2009, 1477−1489.
(2) For reviews on the use of [3 + 2]-cycloaddition strategies for
carbocycle synthesis, see: (a) Lautens, M.; Klute, W.; Tam, W. Chem.
Rev. 1996, 96, 49−92. (b) Hudlicky, T.; Price, J. D. Chem. Rev. 1989,
89, 1467−1486.
(15) Trost, B. M.; Fandrick, D. R. Aldrichimica Acta 2007, 40, 59−72.
17830
dx.doi.org/10.1021/ja309003x | J. Am. Chem. Soc. 2012, 134, 17823−17831