1180
A.M. Tawfik et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 97 (2012) 1172–1180
[9] A.I. Vogel, Quantitative Inorganic Analysis Including Elemental Instrumental
(i) The microbiological activity of the Schiff base complexes
Analysis, second ed., Longmans, London, 1962.
under investigations show higher biological activity towards
gram positive bacteria (S. aureus) gram-negative bacteria
(E. coli) and fungi (A. flavus and C. albicans) as indicated for
other Schiff base ligands and their metal complexes [45–47].
[10] Dheeraj Mandloi, Sheela Joshi, Padmakar V. Khadikar, Navita Khosla,
Bioorganic & Medicinal Chemistry Letters 15 (2005) 405–411.
[11] A. Bansol, R.V. Singh, Indian J. Chem. Sect. A 40 (2002) 989.
[12] W.G. Hanna, M.M. Moowad, Transition Met. Chem. 26 (2001) 644.
[13] N. Sari, S. Arslan, E. Logoglu, I. Sakiyan, J. Sci. 16 (2003) 283.
[14] M.E. Ibrahim, A.A.H. Ali, F.M.M. Maher, J. Chem. Technol. Biotechnol. 55 (1992)
217.
(ii) The importance of this unique property of the investigated
Schiff base complexes is that they could be administered
safely for the treatment of infections caused by any of these
particular strains.
[15] Y. Bodke, S.S. Sangapure, J. Indian Chem. Soc. 80 (2003) 187.
[16] B. Stuart, Infrared and Spectroscopy: Fundamentals and Applications, Wiley
Interscience, New York, 2003 (77, 81, 82).
(iii) Therefore, it is claimed here that such compounds might
have a possible antitumor effect since gram-negative bacte-
ria are considered a quantitative microbiological method for
testing beneficial and important drugs, in both clinical and
experimental tumor chemotherapy [45–47].
[17] K. Nakamoto, Infrared and Ramen Spectra of Inorganic and Coordination
Compounds, fourth ed., Wiley Interscience, New York, 1986.
[18] W.L. Geary, Coord. Chem. Rev. 7 (1971) 81.
[19] S.M. Abu El – Wafa, R.M. Issa, Bull. Soc. Chim. Fr. 88 (1989) 37.
[20] T.M.A. Ismail, A.A. Saleh, M.A. El- Ghamry, Spectrochim. Acta Part A 86 (2012)
276–288.
[21] R. Somnath, T.N. Mandal, A.K. Barik, G. Samik, Polyhedron 27 (2003) 593–601.
[22] C.A. McAuliffe, R.V. Parish, S.M. Abu El- Wafa, R.M. Issa, Inorg. Chim. Acta 115
(1986) 91.
Conclusion
[23] G.J. Kubas, R.R. Ryan, V.Mc. Carty, Inorg. Chem. 19 (1980) 3003.
[24] R.D. Wilson, J.A. Ibers, Inorg. Chem. 17 (1978) 2134.
[25] L.B. Booth, C.A. AcAuliffe, C.L. Stanley, J. Inorg. Met. Chem. 226 (1982) 191.
[26] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Pergamon
Press, 1997. pp. 1173-1193.
[27] A.W. Coats, J.P. Redfern, Nature 20 (1964) 68.
[28] S.M. Abu El- Wafa, M. Gaber, R.M. Issa, T.M. Ismail, Bull. Soc. Chim. Fr. 1 (1983)
31.
[29] F.A. Cotton, D.M.I. Gave, A. Sacce, J. Am. Chem. Soc. 83 (1961) 4175.
[30] W.C. Polter, L.T. Taylor, Inorg. Chem. 15 (1976) 88.
[31] W.W. Wendlandt, Thermal Methods of Analysis, 2nd ed., Wiley, NY, 1973. pp.
45–60.
[32] A.A. Saleh, A.M. Tawfik, S.M. Abu El- Wafa, H.F. Osman, J. Coord. Chem. 57 (14)
(2004) 191.
[33] I. Fidone, K.W.H. Stevens, Proc. Phys. (1959) 73.
[34] S.M. Abu El- Wafa, R.M. Issa, Bull. Soc. Chim. Fr. 37 (1989) 88.
[35] R.T. Sanderson, Chemical Bonds and Bond Energy, second ed., Academic Press,
NY, 1976.
Bioactive Schiff base ligands and their Cu(II) and Mn(II) com-
plexes derived from azosulfapyrimidine were prepared and charac-
terized by different spectroscopic techniques, molar conductance
and magnetic measurements. There are variety in the geometrical
structures of the prepared metal complexes: tetrahedral, square
planar and octahedral structures. The thermal decomposition as
well as the thermodynamic parameters are studied. Antibacterial
and antifungal activity of the ligands and their complexes were
tested. The metal chelates exhibit more inhibitory effects than
the parent ligand.
Appendix A. Supplementary data
[36] G.J.T. Fernandes, J.R. Matos, M. Ionasliro, J. Therm. Anal. Calorim. 64 (2) (2001)
585.
[37] S. Vicint, S. Margutti, E. Pedenonte, J. Therm. Anal. Calorim. 66 (1) (2001) 343.
[38] M.A. El- Ries, S.M. Abu El – Wafa, F.A. Aly, M.A. El – Behairy, Anal. Lett. 18
(1985) 1905.
Supplementary data associated with this article can be found, in
References
[39] S.K. Sengupta, O.P. Pandy, B.K. Srivastava, V.K. Sherma, Transition Met. Chem.
23 (4) (1998) 349.
[1] P.C.A. Bruijnincx, P.J. Sadler, Curr. Opin. Chem. Biol. 12 (2008) 197–206.
[2] P. Nagpal, R.V. Singh, Appl. Organomet. Chem. 18 (2004) 221–226.
[3] C.Y. Wu, L.H. Chen, W.S. Hwang, H.S. Chen, H.S. Chen, C.H. Hung, J. Organomet.
Chem. 689 (2004) 2192–2200.
[4] H.L. Singh, S. Varshney, A.K. Varshney, Appl. Organomet. Chem. 13 (1999) 637–
641.
[5] P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, F. Bartl, Curr. Org. Chem. 13
(2) (2009) 124–148.
[6] C.M. da Silva, D.L. Da Silva, L.V. Modolo, R.B. Alves, M.A. De Resende, C.V.B.
Martins, A. de Fatima, J. Adv. Res. 2 (2011) 1–8.
[40] M.A. Neelakantan, F.R. Ray, M.S. Pillai, J. Indian Chem. Soc. 85 (2008) 100.
[41] A. Dayalan, P. Meera, K. Balaraju, P. Agastian, S. Ignasimuthu, J. Indian Chem.
Soc. 86 (2009) 628.
[42] R.K. Shikkargol, N.N. Mallikarjuna, S.D. Angadi, Natl. Acad. Sci. Lett. (India) 24
(2001) 39–43.
[43] S. Kumar, D.N. Dhar, P.N. Saxena, J. Sci. Ind. Res. 68 (2009) 181–187.
[44] G.G. Mohamed, M.M. Omar, A.M. Hindy, Turk. J. Chem. 30 (2006) 361–382.
[45] K. Sing, M.S. Barwa, P. Tyagi, Eur. J. Med. Chem. 41 (2006) 147–153.
[46] D.C. Shanson, Microbiology in Clinical Practice, Wright PSG, Bristol, London,
Boston, 1982.
[7] R.C. Maurya, P. Patel, Spectrosc. Lett. 32 (2) (1999) 213–236.
[8] M. Jain, S. Gaur, V.P. Singh, R.V. Singh, Appl. Organomet. Chem. 18 (2004) 73–
82.
[47] E. Jawetz, J.L. Melnick, E.A. Adelberg, Review of Medical Microbiology, 16th ed.,
Lang Medical Publications, Los Angeles, California, 1979.