Beilstein J. Org. Chem. 2016, 12, 1624–1628.
2. Raju, R.; Gromyko, O.; Fedorenko, V.; Luzhetskyy, A.; Müller, R.
Tetrahedron Lett. 2012, 53, 6300–6301.
25923 and Escherichia coli ATCC 25922 were also used, see
against Staphylococcus pseudintermedius range at 16 µg/mL,
while the values for 17 against Staphylococcus pseudinter-
medius are more variable and range between 32 and 64 µg/mL.
The MIC of 1 and 17 against Escherichia coli range at
File 2 for details). The antibacterial activity shown by both
compounds suggests that they can be considered as promising
candidates for further developments.
3. Mo, X.; Li, Q.; Ju, J. RSC Adv. 2014, 4, 50566–50593.
4. Tabussum, A.; Riaz, N.; Saleem, M.; Ashraf, M.; Ahmad, M.; Alam, U.;
Jabeen, B.; Malik, A.; Jabbar, A. Phytochem. Lett. 2013, 6, 614–619.
5. Zuther, K.; Mayser, P.; Hettwer, U.; Wu, W.; Spiteller, P.; Kindler, B. L.;
Karlovsky, P.; Basse, C. W.; Schirawski, J. Mol. Microbiol. 2008, 68,
6. El-Desouky, S. K.; Kim, K. H.; Ryu, S. Y.; Eweas, A. F.;
Gamal-Eldeen, A. M.; Kim, Y.-K. Arch. Pharmacal Res. 2007, 30,
Conclusion
7. Pace, P.; Spieser, S. A. H.; Summa, V. Bioorg. Med. Chem. Lett. 2008,
In conclusion, leopolic acid A was obtained for the first time in
a 11-step synthesis. The main difficulty encountered was the
instability of a number of intermediates containing the 2,3-
pyrrolidinedione moiety, which may be a reason for the scarce
presence of similar compounds in the literature. With these
results, we have attained a deeper knowledge of the chemistry
of the unusual 2,3-pyrrolidinedione system and developed a
synthetic strategy towards new lead compounds with antimicro-
bial activity. Efforts to synthesize analogues to build a struc-
ture–activity relationship (SAR) profile and optimize the activi-
ty are underway.
8. Kawasuji, T.; Fuji, M.; Yoshinaga, T.; Sato, A.; Fujiwara, T.; Kiyama, R.
Bioorg. Med. Chem. 2007, 15, 5487–5494.
9. Zhu, H.-L.; Ling, J.-B.; Xu, P.-F. J. Org. Chem. 2012, 77, 7737–7743.
10.Sundberg, R. J.; Pearce, B. C.; Laurino, J. P. J. Heterocycl. Chem.
11.Coumar, M. S.; Wu, J.-S.; Leou, J.-S.; Tan, U.-K.; Chang, C.-Y.;
Chang, T.-Y.; Lin, W.-H.; Hsu, J. T.-A.; Chao, Y.-S.; Wu, S.-Y.;
Hsieh, H.-P. Bioorg. Med. Chem. Lett. 2008, 18, 1623–1627.
12.Dhavan, A. A.; Ionescu, A. C.; Kaduskar, R. D.; Brambilla, E.;
Dallavalle, S. Bioorg. Med. Chem. Lett. 2016, 26, 1376–1380.
Supporting Information
13.Meyer, W. L.; Vaughan, W. R. J. Org. Chem. 1957, 22, 1554–1560.
Supporting Information File 1
14.Vaughan, W. R.; Covey, I. S. J. Am. Chem. Soc. 1958, 80, 2197–2201.
General experimental methods, synthetic procedures and
analytical data for the reported compounds; antimicrobial
activity evaluation procedures.
15.Southwick, P. L.; Barnas, E. F. J. Org. Chem. 1962, 27, 98–106.
16.Wang, M.; Chen, Y.; Lou, L.; Tang, W.; Wang, X.; Shen, J.
Tetrahedron Lett. 2005, 46, 5309–5312.
Supporting Information File 2
17.Anzai, M.; Yanada, R.; Fujii, N.; Ohno, H.; Ibuka, T.; Takemoto, Y.
Tetrahedron 2002, 58, 5231–5239.
1H and 13C NMR spectra of all the new compounds; 2D
HMBC, HSQC spectra of compounds 1, and 17, COSY
spectrum of compound 1, MIC of compounds 1 and 17
against Staphylococcus pseudintermedius and Escherichia
coli strains.
18.Benedetti, F.; Berti, F.; Garau, G.; Martinuzzi, I.; Norbedo, S.
19.Kaduskar, R. D.; Dhavan, A. A.; Dallavalle, S.; Scaglioni, L.; Musso, L.
20.Kano, S.; Yokomatsu, T.; Iwasawa, H.; Shibuya, S. Tetrahedron Lett.
21.Madhusudhan, G.; Reddy, G. O.; Ramanatham, J.; Dubey, P. K.
Tetrahedron Lett. 2003, 44, 6323–6325.
Acknowledgments
The authors gratefully acknowledge Professor L. Merlini for
22.Preciado, A.; Williams, P. G. J. Org. Chem. 2008, 73, 9228–9234.
23.Rengasamy, R.; Curtis-Long, M. J.; Seo, W. D.; Jeong, S. H.;
Jeong, I.-Y.; Park, K. H. J. Org. Chem. 2008, 73, 2898–2901.
helpful suggestions and discussion.
References
1. Brown, D. G.; Lister, T.; May-Dracka, T. L. Bioorg. Med. Chem. Lett.
24.Barbachyn, M. R.; Ford, C. W. Angew. Chem., Int. Ed. 2003, 42,
1627