114
X. Yi et al. / Dyes and Pigments 96 (2013) 104e115
electrophosphorescent properties of mononuclear platinum(II) complexes
based on 2-phenylbenzoimidazole derivatives. Organomet Chem 2009;
694(17):2777e85;
(f) Tsujimoto H, Yagi S, Asuka H, Inui Y, Ikawa S, Maeda T, et al. Pure red
electrophosphorescence from polymer light-emitting diodes doped with
highly emissive bis-cyclometalated iridium(III) complexes. J Organomet Chem
2010;695(17):1972e8.
Acknowledgments
J
We thank the NSFC (20972024 and 21073028), the Fundamental
Research Funds for the Central Universities (DUT10ZD212), the
Royal Society (UK) and NSFC (China-UK Cost-Share Science
Networks, 21011130154) and Ministry of Education (NCET-08-
0077) for financial support.
[11] Neve F, Deda ML, Crispini A, Bellusci A, Puntoriero F, Campagna S. Cationic
cyclometalated iridium luminophores: photophysical, redox, and structural
characterization. Organometallics 2004;23(24):5856e63.
[12] (a) Liu SJ, Zhao Q, Fan QL, Huang W. A series of red-light-emitting ionic
iridium complexes: structures, excited state properties, and application in
electroluminescent devices. Eur J Inorg Chem 2008;13:2177e85;
(b) Yang CH, Fang KH, Su WL, Wang SP, Su SK, Sun IW. Color tuning of iridium
complexes for organic light-emitting diodes: the electronegative effect and p-
conjugation effect. J Organomet Chem 2006;691(12):2767e73;
(c) Shan GG, Li HB, Cao HT, Zhu DX, Su ZM, Liao Y. Synthesis, structure and
photophysical properties of cationic Ir(III) complexes with functionalized
1,10-phenanthroline ancillary ligands. J Organomet Chem 2012;713:20e6.
[13] Baranoff E, Fantacci S, Angelis FD, Zhang X, Scopelliti R, Grätzel M, et al.
Cyclometalated iridium(III) complexes based on phenyl-imidazole ligand.
Inorg Chem 2011;50(2):451e62.
[14] (a) Jayabharathi J, Thanikachalam V, Saravanan K, Srinivasan N. Iridium(III)
complexes with orthometalated phenylimidazole ligands subtle turning of
emission to the saturated green colour. J Fluoresc 2011;21(2):507e19;
(b) Chen TR. Synthesis and characterization of cyclometalated iridium(III)
complexes containing benzoxazole derivatives and different ancillary ligands.
J Organomet Chem 2008;693(19):3117e30;
Appendix A. Supplementary material
Supplementary material associated with this article can be
References
[1] Williams JA. Photochemistry and photophysics of coordination compounds:
platinum. Top Curr Chem 2007;281:205e68.
[2] (a) Wong WY. Challenges in organometallic research-great opportunity for
solar cells and OLEDs. J Organomet Chem 2009;694(17):2644e7;
(b) Zhou G, Wong WY, Suo S. Recent progress and current challenges in
phosphorescent white organic light-emitting diodes (WOLEDs). J Photochem
Photobio C: Photochem Rev 2010;11:133e56;
(c) Wu H, Zhou G, Zou J, Ho C-L, Wong W-Y, Yang W, et al. Efficient polymer
white-light-emitting devices for solid-state lighting. Adv Mater 2009;21:
4181e4;
(c) Zhou G, Wong WY, Yang X. New design tactics in OLEDs using function-
alized 2-phenylpyridine-type cyclometalates of iridium(III) and platinum(II).
Chem e Asian J 2011;6:1706e27;
(d) Zou J, Wu H, Lam C-S, Wang C, Zhu J, Zhong C, et al. Simultaneous opti-
mization of charge-carrier balance and luminous efficacy in highly efficient
white polymer light-emitting devices. Adv Mater 2011;23:2976e80;
(e) Zhang B, Tan G, Lam C-S, Yao B, Ho C-L, Liu L, et al. High-efficiency single
emissive layer white organic light-emitting diodes based on solution-
processed dendritic host and new orange-emitting iridium complex. Adv
Mater 2012;24:1873e7;
(f) Ho C-L, Gao Z-Q, Mi B-X, Chen C-H, Cheah K-W, Lin Z, et al. Multifunctional
iridium complexes based on carbazole modules as highly efficient electro-
phosphors. Angew Chem Int Ed 2006;45:7800e3;
(g) Ho C-L, Wong W-Y, Wang Qi, Ma D, Wang L, Lin Z. A multifunctional
iridium-carbazolyl orange phosphor for high-performance two-element
WOLED exploiting exciton-managed fluorescence/phosphorescence. Adv
Funct Mater 2008;18:928e37;
(h) Zhou G, Wong W-Y, Yao B, Xie Z, Wang L. Triphenylamine-dendronized
pure red iridium phosphors with superior OLED efficiency/color purity trade-
offs. Angew Chem Int Ed 2007;46:1149e51;
(d) Wong WY, Ho C-L. Heavy metal organometallic electrophosphors derived
from multi-component chromophores. Coord Chem Rev 2009;253:1709e58;
(e) Wong W-Y, Ho C-L. Functional metallophosphors for effective charge
carrier injection/transport: new robust OLED materials with emerging appli-
cations. J Mater Chem 2009;19:4457e82.
[3] Zhou G, Ho CL, Wong WY, Wang Q, Ma D, Wang L, et al. Manipulating charge-
transfer character with electron-withdrawing main-group moieties for the
color tuning of iridium electrophosphors. Adv Funct Mater 2008;18(3):
499e511.
[4] Yeh YS, Cheng YM, Chou PT, Lee GH, Yang CH, Chi Y, et al. A new family of
homoleptic Ir(III) complexes: tris-pyridyl azolate derivatives with dual
phosphorescence. Chem Phys Chem 2006;7(11):2294e7.
[5] Chi Y, Chou PT. Transition-metal phosphors with cyclometalating ligands:
fundamentals and applications. Chem Soc Rev 2010;39(2):638e55.
[6] Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigel-letti F. Photochemistry
and photophysics of coordination compounds: iridium. Top Curr Chem 2007;
281:143e203.
(i) Ho C-L, Lin M-F, Wong W-Y, Wong W-K, Chen CH. High-efficiency and
color-stable white organic light-emitting devices based on sky blue electro-
fluorescence and orange electrophosphorescence. Appl Phys Lett 2008;92:
083301;
(j) Zhou G-J, Wong W-Y, Yao B, Xie Z, Wang L. Multifunctional metal-
lophosphors with anti-tripletetriplet annihilation properties for solution-
processable electroluminescent devices. J Mater Chem 2008;18:1799e809.
[7] (a) Liu Y, Ye K, Fan Y, Song W, Wang Y, Hou Z. Amidinate-ligated iridium(III)
bis(2-pyridyl)phenyl complex as an excellent phosphorescent material for
electroluminescence devices. Chem Commun 2009;25:3699e701;
(b) Wang Z, Lu P, Xue S, Gu C, Lv Y, Zhu Q, et al. A solution-processable deep
red molecular emitter for non-doped organic red-light-emitting diodes. Dyes
Pigm 2011;91(3):356e63;
(c) Tang H, Li Y, Wei C, Chen B, Yang W, Wu H, et al. Novel yellow phos-
phorescent iridium complexes containing a carbazole-oxadiazole unit used in
polymeric light-emitting diodes. Dyes Pigm 2011;91(3):413e21.
[8] (a) Williams EL, Li J, Jabbour GE. Organic light-emitting diodes having exclu-
sive near-infrared electrophosphorescence. Appl Phys Lett 2006;89(8):
083506e9;
[15] (a) Geib B, Lambert C. A small cationic donoreacceptor iridium complex with
a long-lived charge-separated state. Chem Commun 2009;13:1670e2;
(b) Ning Z, Zhang Q, Wu W, Tian H. Novel iridium complex with carboxyl
pyridyl ligand for dye-sensitized solar cells: high fluorescence intensity, high
electron injection efficiency? J Organomet Chem 2009;694(16):2705e11.
[16] Hanss D, Freys JC, Bernardinelli G, Wenger OS. Cyclometalated iridium(III)
complexes as photosensitizers for long-range electron transfer: occurrence of
a Coulomb barrier. Eur J Inorg Chem 2009;32:4850e9.
(b) Chou P-T, Chi Y, Chung M-W, Lin C-C. Harvesting luminescence via har-
nessing the photophysical properties of transition metal complexes. Coord
Chem Rev 2011;255:2653e65.
[17] Fernández-Moreira V, Thorp-Greenwood FL, Coogan MP. Application of d6
transition metal complexes in fluorescence cell imaging. Chem Commun
2010;46(2):186e202.
[18] Wu W, Wu W, Ji S, Guo H, Zhao J. Observation of room-temperature deep-
red/near-IR phosphorescence of pyrene with cycloplatinated complexes:
[9] (a) Chen HY, Yang CH, Chi Y, Cheng YM, Yeh YS, Chou PT, et al. Room-
temperature NIR phosphorescence of new iridium (III) complexes with
ligands derived from benzoquinoxaline. Can J Chem 2006;84(2):309e18;
(b) Hua J, Zhang G, Shih H-H, Jiang X, Sun P, Cheng C- H. Synthesis of a highly
phosphorescent emitting iridium(III) complex and its application in OLEDs.
J Organomet Chem 2008;693(16):2798e802.
[10] (a) Dragonetti C, Falci-ola L, Mussini P, Righetto S, Roberto D, Ugo R, et al. The
role of substituents on functionalized 1,10-phenanthroline in controlling the
emission properties of cationic iridium(III) complexes of interest for electro-
luminescent devices. Inorg Chem 2007;46(21):8533e47;
an experimental and theoretical study. Eur
J Inorg Chem 2010;28:
4470e82.
[19] Xiong L, Zhao Q, Chen H, Wu Y, Dong Z, Zhou Z, et al. Phosphorescence
imaging of homocysteine and cysteine in living cells based on a cationic iri-
dium(III) complex. Inorg Chem 2010;49(14):6402e8.
[20] Zhao Q, Li F, Huang C. Phosphorescent chemosensors based on heavy-metal
complexes. Chem Soc Rev 2010;39(8):3007e30.
(b) Huang C, Zhen C, Su S, Chen Z, Liu X, Zou D, et al. High-efficiency solution
processable electrophosphorescent iridium complexes bearing poly-
[21] Mak CS, Pentlehner D, Stich M, Wolfbeis OS, Chan WK, Yersin H. Exceptional
oxygen sensing capabilities and triplet state properties of Ir(ppy-NPh2)3.
Chem Mater 2009;21(11):2173e5.
[22] Jasimuddin S, Yamada T, Fukuju K, Otsuki J, Sakai K. Photocatalytic hydrogen
production from water in self-assembled supramolecular iridiumecobalt
systems. Chem Commun 2010;46(44):8466e8.
phenylphenyl dendron ligands.
1317e24;
(c) Ho CL, Wong WY, Yao B, Xie Z, Wang L, Lin Z. Synthesis, characterization,
photophysics and electrophosphorescent applications of phosphorescent
platinum cyclometalated complexes with 9-arylcarbazole moieties.
J Organomet Chem 2009;694(17):2735e49;
J Organomet Chem 2009;694(9e10):
[23] (a) Gärtner F, Cozzula D, Losse S, Boddien A, Anilkumar G, Junge H, et al.
Synthesis, characterisation and application of iridium(III) photosensitisers for
catalytic water reduction. Chem Eur J 2011;17(25):6998e7006;
(b) Lalevée J, Peter M, Dumur F, Gigmes D, Blanchard N, Tehfe M, et al. Subtle
(d) Ding J, Lü J, Cheng Y, Xie Z, Wang L, Jing X, et al. Effect of ancillary ligands
on the properties of heteroleptic green iridium dendrimers functionalized
with carbazole dendrons. J Organomet Chem 2009;694(13):2700e4;
(e) Li H, Ding J, Xie Z, Cheng Y, Wang L. Synthesis, characterization and