Conclusions
Oxa-dibenzocyclooctyne (ODIBO, 2) exhibits unsurpassed reac-
tivity in metal-free acetylene-azide cycloaddition. The rate of the
reaction dramatically increases in aqueous solution, making this
compound very suitable for rapid labeling applications in bio-
chemistry. High reactivity of ODIBO towards organic azides is
combined with good aqueous stability and low susceptibility to
nucleophilic attack. These properties should reduce or eliminate
non-specific binding, known for other SPAAC reagents. The
photochemical precursor of ODIBO, in which the triple bond is
masked as a cyclopropenone functionality (Photo-ODIBO, 1)
does not react with azides, thus allowing for spatially and tem-
porally-resolved labeling. In addition, Photo-ODIBO possesses
great thermal stability and can survive heating in excess of
160 °C. Our current work is focused on the optimization of the
preparative procedures and conjugation of ODIBO with biotin
and fluorescent dyes for cell-labeling experiments.
Fig. 3 Dependence of the rates constants for the reaction of ODIBO
1a with benzyl azide on water contents in aqueous methanol. (Bimolecu-
lar rate constants were evaluated from a rate measured at a 2.5 mM of
benzyl azide and 115 μM of 1a). Insert shows the kinetic trace recorded
at 800 nM of ODIBO 2a.
Notes and references
for DIBO.4 This rate-enhancing effect was also observed in
present work for ODIBO. In 65–70% aqueous solutions15
ODIBO reacts 5–28 times faster with organic azides than in
methanol (Table 1). The reaction still follows the first order law
well and the rate shows linear dependence on azide concentration
(Fig. S1†14).
1 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004; J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39,
1302.
2 L. M. Gaetke and C. K. Chow, Toxicology, 2003, 189, 147; C. J. Burrows
and J. G. Muller, Chem. Rev., 1998, 98, 1109; Q. Wang, T. R. Chan,
R. Hilgraf, V. V. Fokin, K. B. Sharpless and M. G. Finn, J. Am. Chem.
Soc., 2003, 125, 3192.
3 (a) J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang,
I. A. Miller, A. Lo, J. A. Codelli and C. R. Bertozzi, Proc. Natl. Acad.
Sci. U. S. A., 2007, 104, 16793; (b) E. M. Sletten and C. R. Bertozzi,
Org. Lett., 2008, 10, 3097; (c) J. A. Codelli, J. M. Baskin, N. J. Agard
and C. R. Bertozzi, J. Am. Chem. Soc., 2008, 130, 11486;
(d) J. Dommerholt, S. Schmidt, R. Temming, L. J. A. Hendriks, F. P. J.
T. Rutjes, J. C. M. van Hest, D. J. Lefeber, P. Friedl and F. L. van Delft,
Angew. Chem., Int. Ed., 2010, 49, 9422.
To explore the water concentration effect on the rate of
ODIBO click reactions further, we have measured the rate of the
disappearance of ODIBO 2a (115 μM) in the presence of
2.5 mM of benzyl azide in aqueous methanol with variable
water content. Second order rate constants calculated from the
observed pseudo-first order rate constants show a smooth non-
linear increase with the rise in water concentration (Fig. 3). Con-
servative extrapolation of this trend suggests that in wholly
aqueous solution azide cycloaddition to ODIBO could proceed
with the rates in excess of 2–3 × 102 M−1 s−1. The acceleration
of the SPAAC reaction in aqueous solution is apparently caused
by higher polarity and/or donor–acceptor interaction with the
solvent. However, it is also possible that rate enhancement is
caused by the formation of an inhomogeneous solution, such as
the microemulsion of azide or aggregation of ODIBO, at higher
water concentrations. While the smooth monotonic increase of
the reaction rates shown in Fig. 3 and linear dependence of
pseudo-first order rate constant on azide concentration
(Fig. S1†14) do not support such a hypothesis, we conducted
two additional experiments to get further insight in the reactiv-
ity-enhancement effect of water. Under the extreme dilution con-
ditions, with the concentration of ODIBO 2a at 800 nM the
observed rate of the reaction with benzyl azide in water–metha-
nol–THF mixture (13 : 4 : 3) was virtually identical to that
recorded at 150 times higher concentration of the substrate
(insert in Fig. 3). This observation shows that solubility of
ODIBO does not cause rate enhancement in aqueous solutions.
Next, we explored the reaction of ODIBO 2c with water soluble
azide, 1-amino-8-azido-3,5-dioxaoctane (TEG-Azide). The for-
mation of triazole proceeded progressively faster on the way
from methanol solutions to almost neat water albeit effect was
less pronounced than for aromatic azide (Table 1).
4 X. Ning, J. Guo, M. A. Wolfert and G.-J. Boons, Angew. Chem., Int. Ed.,
2008, 47, 2253.
5 (a) J. C. Jewett, E. M. Sletten and C. R. Bertozzi, J. Am. Chem. Soc.,
2010, 132, 3688; (b) M. F. Debets, S. S. van Berkel, S. Schoffelen,
F. P. J. T. Rutjes, J. C. M. van Hest and F. L. van Delft, Chem. Commun.,
2010, 46, 97; (c) A. Kuzmin, A. Poloukhtine, M. Wolfert and
V. V. Popik, Bioconjugate Chem., 2010, 21, 2076.
6 G. de Almeida, E. M. Sletten, H. Nakamura, K. K. Palaniappan and
C. R. Bertozzi, Angew. Chem., Int. Ed., 2012, 51, 2443.
7 (a) D. H. Ess, G. O. Jones and K. N. Houk, Org. Lett., 2008, 10, 1633;
(b) J. C. Jewett and C. R. Bertozzi, Chem. Soc. Rev., 2010, 39, 1272;
(c) M. F. Debets, C. W. J. van der Doelen, F. P. J. T. Rutjes and F. L. van
Delft, ChemBioChem, 2010, 11, 1168; (d) M. F. Debets, S. S. van Berkel,
J. Dommerholt, A. J. Dirks, A. F. P. J. T. Rutjes and F. L. van Delft, Acc.
Chem. Res., 2011, 44, 805; (e) E. M. Sletten and C. R. Bertozzi, Acc.
Chem. Res., 2011, 44, 666.
8 A. Krebs and J. Wilke, Top. Curr. Chem., 1983, 109, 189.
9 B. R. Varga, M. Kállay, K. Hegyi, S. Béni and P. Kele, Chem.–Eur. J.,
2012, 18, 822.
10 A. A. Poloukhtine, N. E. Mbua, M. A. Wolfert, G.-J. Boons and
V. V. Popik, J. Am. Chem. Soc., 2009, 131, 15769.
11 E. M. Sletten, H. Nakamura, J. C. Jewett and C. R. Bertozzi, J. Am.
Chem. Soc., 2010, 132, 11799.
12 (a) K. E. Beatty, J. D. Fisk, B. P. Smart, Y. Y. Lu, J. Szychowski,
M. J. Hangauer, J. M. Baskin, C. R. Bertozzi and D. A. Tirrell, ChemBio-
Chem, 2010, 11, 2092; (b) P. V. Chang, J. A. Prescher, E. M. Sletten,
J. M. Baskin, I. A. Miller, N. J. Agard, A. Lo and C. R. Bertozzi, Proc.
Natl. Acad. Sci. U. S. A., 2010, 107, 1821.
13 S. V. Orski, A. A. Poloukhtine, S. Arumugam, L. Mao, V. V. Popik and
J. Locklin, J. Am. Chem. Soc., 2010, 132, 11024.
14 ESI†
15 Organic co-solvent was necessary for ensuring homogeneity of the azide
solution.
8202 | Org. Biomol. Chem., 2012, 10, 8200–8202
This journal is © The Royal Society of Chemistry 2012