Organometallics
Communication
(6) (a) Shibasaki, M.; Yamamoto, Y. Multimetallic Catalysis in Organic
Synthesis; Wiley-VCH: Weinheim, 2004. (b) Rowlands, G. J.
Tetrahedron 2001, 57, 1865. (c) van den Beuken, E. K.; Feringa, B.
L. Tetrahedron 1998, 54, 12985. (d) Steimhagen, H.; Helmchen, G.
Angew. Chem., Int. Ed. 1996, 35, 2339.
(7) (a) Karshtedt, D.; Bell, A. T.; Tilley, T. D. Organometallics 2003,
22, 2855. (b) Son, K.; Pearson, D. M.; Jeon, S.-J.; Waymouth, R. M.
Eur. J. Inorg. Chem. 2011, 4256.
(8) Tsukada, N.; Tamura, O.; Inoue, Y. Organometallics 2002, 21,
2521.
(9) (a) Tsukada, N.; Mitsuboshi, T.; Setoguchi, H.; Inoue, Y. J. Am.
Chem. Soc. 2003, 125, 12102. (b) Tsukada, N.; Setoguchi, H.;
Mitsuboshi, T.; Inoue, Y. Chem. Lett. 2006, 35, 1164. (c) Tsukada, N.;
Ninomiya, S.; Aoyama, Y.; Inoue, Y. Org. Lett. 2007, 9, 2919.
of the bimetallic catalyst. Compounds 4, 5, and 8-aminoquino-
line, which lack one of the two chelate moieties, proved much
less effective than dpqfamH as ligands (entries 12−16).
Addition of both chelate moieties 5 and 8-aminoquinolines
instead of dpqfamH was also ineffective (entry 17).
The reaction proceeded at 40 °C by using toluene as solvent
instead of THF. Table 2 summarizes the results of the coupling
reaction of aryl iodides and amines in toluene. The reaction of
various aryl halides bearing electron-donating or electron-
withdrawing substituents afforded corresponding diarylamines
in high yields (entries 1−7). Various substituted anilines were
also reactive, although higher temperature was required in the
case of nitro- or cyano-substituted anilines (entries 8−14).
Sterically hindered diarylamines bearing ortho-substituents were
also obtained (entries 15−17). Although higher temperature
was required, the reaction of iodobenzene and primary
alkylamines gave alkylarylamines in high yields (entries 18−22).
In summary, we designed a new chelate-bridging ligand for
enhancement of a cooperative effect of palladium and copper,
synthesized dinuclear palladium−copper complexes 2 by using
the ligand, and found that 2 proved higher in activity in the
amination of aryl iodides than mononuclear catalyst. This result
shows that palladium and copper in 2 work in a cooperative
manner. Detailed mechanistic studies to understand how the
two metals cooperate and fine-tuning of the ligand for higher
catalytic activity are in progress.
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental procedures, characterization data for new
compounds, and crystallographic data (CIF). This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was carried out using instruments of the Center for
Instrumental Analysis of Shizuoka University.
■
REFERENCES
■
(1) Tsuji, J. Palladium Reagents and Catalysits: Innovations in Organic
Synthesis; Wiley: Chichester, 1995; Chapter 3.
(2) Sonogashira, K. In Metal-Catalyzed Cross-coupling Reactions;
Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany,
1998; Chapter 5.
(3) (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47,
6338. (b) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. (c) Jiang, L.;
Buchwald, S. L. In Metal- Catalyzed Cross-Coupling Reactions; De
Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2,
p 699. (d) Hartwig, J. F. In Modern Amination Methods; Ricci, A., Ed.;
Wiley-VCH: Weinheim, Germany, 2000.
(4) (a) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47,
3096. (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400.
(5) (a) Sperotto, E.; van Klink, G. P. M.; van Koten, G.; de Vries, J.
G. Dalton Trans. 2010, 39, 10338. (b) Jones, G. O.; Liu, P.; Houk, K.
N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205. (c) Tye, J. W.;
Weng, Z.; Johns, A. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem.
Soc. 2008, 130, 9971.
7338
dx.doi.org/10.1021/om300902t | Organometallics 2012, 31, 7336−7338