1972
M. E. Hart et al. / Bioorg. Med. Chem. Lett. 14 (2004) 1969–1973
Table 2. Growth inhibition (GI50, mM) of various tumour cell lines
after 72 h continuous exposure to test compounds 1–16
Acknowledgements
We are grateful for financial support from the National
Institutes of Health (GM57550) and The Margaret
Mitchell Fund.
Compd
Tumour cell lineb
A2780
G401
HT29
GI50 mMa
H460
L1210
1
2
3
4
5
6
7
8
10Æ2
3.5Æ0.3
35Æ2.3
53Æ7.4
6.4Æ0.7
33Æ7
4.3Æ0.9
50Æ4
15Æ2
39Æ5
13Æ0.3
49Æ5.8
References and notes
30Æ8.0
57Æ7.7
43Æ1.5
81Æ1.0 >100
98Æ2.5 >100
85Æ5.0 >100
95Æ5.0 >100
98Æ2.5 >100
90Æ0.1 >100
82Æ10 >100
97Æ3.3 >100
83Æ8.8 >100
80Æ5.8 >100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
1. McCluskey, A.; Sakoff, J. A. Mini Rev. Med. Chem. 2001,
1, 43.
2. Sakoff, J. A.; Ackland, S. P.; Baldwin, M. L.; Keane,
M. A.; McCluskey, A. Invest. New Drugs 2002, 21, 1.
3. McCluskey, A.; Sim, A. T. R.; Sakoff, J. A. J. Med.
Chem. 2002, 45, 1151.
4. Wera, S.; Hemmings, B. A. Biochem. J. 1995, 311, 17.
5. Stein, G. S.; Baserga, R.; Giordano, A.; Denhardt, D. T.
The Molecular Basis of Cell Cycle and Growth Control;
Wiley-Liss: NY, 1999.
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
9
10
11
12
13
14
15
16
87Æ7.3
90Æ5.8 >100
88Æ7.3 >100
89Æ0.8 >100
6. Durfee, T.; Becherer, K.; Chen, L.; Yeh, S. H.; Yang, Y.;
Kilburn, A. E.; Lee, W. H.; Elledge, S. J. Genes Dev. 1993,
7, 555.
7. Lazzereschi, D.; Coppa, A.; Mincione, G.; Lavitrano, M.;
Fragomele, F.; Colletta, G. Exp. Cell Res. 1997, 234, 425.
8. Yamashita, K.; Yasuda, H.; Pines, J.; Yasumoto, K.;
Nishitani, H.; Ohtsubo, M.; Hunter, T.; Sugimura, T.;
Nishimoto, T. EMBO J. 1990, 9, 4331.
40Æ10
25Æ1.5
49Æ15 41Æ9.2
48Æ1.5
a GI50 is the concentration that induces 50% growth inhibition com-
pared with untreated control cells.
b A2780 (Human ovarian carcinoma), G401 (human kidney carci-
noma), HT29 (human colorectal carcinoma), H460 (human lung
carcinoma), L1210 (murine leukemia).
9. Ghosh, S.; Schroeter, D.; Paweletz, N. Exp. Cell Res.
1996, 227, 165.
10. Roberge, M.; Tudan, C.; Hung, S. M.; Harder, K. W.;
Jirik, F. R. Cancer Res. 1994, 54, 6115.
11. Cheng, A.; Balczon, R.; Zuo, Z.; Koons, J. S.; Walsh,
A. H.; Honkanen, R. E. Cancer Res. 1998, 58, 3611.
12. McCluskey, A.; Bowyer, M. C.; Collins, E.; Sim, A. T. R.;
Sakoff, J. A.; Baldwin, M. L. Bioorg. Med. Chem. Lett.
2000, 10, 1687.
In view of the anticancer activity and clinical use of
cantharidin, norcantharidin and fostriecin we also con-
ducted cytotoxicity studies in a number of tumour cell
lines, and the results from these studies are shown in
Table 2.
Growth inhibition was evaluated using the MTT
assay.15 From Table 2 it was apparent that cantharidin
(1) and norcantharidin (2) were potent growth inhibi-
tory compounds in all cell lines tested.2 Of the synthe-
sized analogues, compounds 4–15 displayed minimal
growth inhibition with GI50s ranging from 80 mM to
>100 mM. However, compounds 3 and 16 showed
strong growth inhibition with GI50 values comparable
to that of norcantharidin. Interestingly, compound 16
was the most potent PP2A inhibitor, suggesting that this
was the mode of action leading to impaired cellular
replication. Compound 3 on the other hand was less
potent at inhibiting PP1/PP2A activity in vitro, how-
ever, the ester linkage in this compound is susceptible to
intracellular enzymatic cleavage resulting in the poten-
tial production of a more potent intracellular PP1/PP2A
inhibitor. Nonetheless, alternative modes of cell growth
inhibition for this analogue can not be excluded. Simi-
larly, variations in cellular uptake, membrane perme-
ability, drug stability and drug metabolism may account
for the lack of cell growth inhibition in those com-
pounds that were moderate PP2A inhibitors such as
compounds 9, 10, 13, and 14.
13. Wang, G.-S. J. Ethnopharmacol. 1989, 26, 147.
14. Liu, X.-H.; Balzsek, I.; Comisso, M.; Legras, S.; Marion,
S.; Quittet, P.; Anjo, A.; Wang, G.-S. Eur. J. Cancer 1995,
31A, 953.
15. (a) McCluskey, A.; Taylor, C.; Quinn, R. J.; Suganuma,
M.; Fujiki, H. Bioorg. Med. Chem. Lett. 1996, 6, 1025. (b)
Enz, A.; Zenke, G.; Pombo-Villar, E. Bioorg. Med. Chem.
Lett. 1997, 7, 2513. (c) Sodeoka, M.; Baba, Y.; Kobayashi,
S.; Hirukawa, N. Bioorg. Med. Chem. Lett. 1997, 7,
1833. (d) Tatlock, J. H.; Linton, M. A.; Hou, X. J.;
Kissinger, C. R.; Pelletier, L. A.; Showalter, R. E.;
Tempczyk, A.; Villafranca, J. E. Bioorg. Med. Chem. Lett.
1997, 7, 1007. (e) McCluskey, A.; Bowyer, M. C.;
Walkom, C.; Ackland, S. P.; Gardiner, E.; Sakoff, J. A.
Bioorg. Med. Chem. Lett. 2001, 11, 2941. (f) McCluskey,
A.; Keane, M. A.; Walkom, C.; Bowyer, M. C.; Sim,
A. T. R.; Young, D. J.; Sakoff, J. A. Bioorg. Med. Chem.
Lett. 2002, 12, 391.
16. Aggen, J. B.; Humphrey, J. M.; Gauss, C.-M.; Huang,
H.-B.; Nairn, A. A. C.; Chamberlin, A. R. Bioorg. Med.
Chem. 1999, 7, 543.
17. Tatlock, J. H.; Linton, M. A.; Hou, X. J.; Kissinger,
C. R.; Pelletier, L. A.; Showalter, R. E.; Tempczyk, A.;
Villafranca, J. E. Bioorg. Med. Chem. Lett. 1997, 7, 1007.
18. The Diels–Alder cycloadditions giving the respective 5,6-
dehydronorcantharidin ring systems, and in some cases
subsequent catalytic hydrogenations, were carried out
essentially as described in ref 16. Half-acids were prepared
by treating the appropriate anhydrides directly with alco-
hols or amines. Starting materials, reagents, reaction
times, and yields for each analogue are summarised
below: 3: Prepared by the literature procedure, ref 17. 4:
This study clearly illustrates the ability to produce
modified cantharidin and norcantharidin analogues
while maintaining protein phosphatase inhibitory activ-
ity and cell growth inhibition. This study provides the
basis for further development of this class of protein
phosphatase inhibitors for the treatment of malignancy.